
Data visualization

Lecture 2

Louis SIRUGUE

M1 APE - Fall 2022

Quick reminder

1. Import data

fb <- read.csv("C:/User/Documents/ligue1.csv", encoding = "UTF-8")

2. Class

is.numeric("1.6180339") # What would be the output?

[1] FALSE

3. Subsetting

fb$Home[3]

[1] "Troyes"

2 / 85

https://louissirugue.github.io/intro_to_R/home.html

Function Meaning

mutate() Modify or create a variable

select() Keep a subset of variables

filter() Keep a subset of observations

arrange() Sort the data

group_by() Group the data

summarise() Summarizes variables into 1 observation per group

Quick reminder

4. Packages

library(dplyr)

5. The dplyr grammar

3 / 85

https://louissirugue.github.io/intro_to_R/home.html

Warm up practice

1) Import starbucks.csv and View() the data

2) Inspect the structure of the data using str()

3) Use summarise() to compute for each beverage category the average number of calories and the number
of different declinations (there is 1 row per declination)

4) Create a subset of the data called maxcal containing the variables Beverage_category, Beverage_prep,
and Calories, for the 10 observations with the highest calorie values

You can use the row_number() function within filter() to use the row numbers as any other variable

You've got 10 minutes!
4 / 85

10:00

Solution

1) Import starbucks.csv and View() the data

starbucks <- read.csv("C:/User/Documents/starbucks.csv")

View(starbucks)

5 / 85

Solution

1) Import starbucks.csv and View() the data

starbucks <- read.csv("C:/User/Documents/starbucks.csv")

View(starbucks)

We only have one variable in which all values are separated by semicolons
We need to set the sep argument of the function accordingly

6 / 85

Solution

1) Import starbucks.csv and View() the data

starbucks <- read.csv("C:/User/Documents/starbucks.csv")

View(starbucks)

We only have one variable in which all values are separated by semicolons
We need to set the sep argument of the function accordingly
Like last time, we also need to set the encoding argument correctly

starbucks <- read.csv("C:/User/Documents/starbucks.csv", sep = ";", encoding = "UTF-8")

7 / 85

Solution

2) Inspect the structure of the data using str()

str(starbucks)

'data.frame': 242 obs. of 18 variables:

$ Beverage_category : chr "Coffee" "Coffee" "Coffee" "Coffee" ...

$ Beverage : chr "Brewed Coffee" "Brewed Coffee" "Brewed Coffee" "Brewed Coffee" ...

$ Beverage_prep : chr "Short" "Tall" "Grande" "Venti" ...

$ Calories : int 3 4 5 5 70 100 70 100 150 110 ...

$ Total.Fat : chr "0.1" "0.1" "0.1" "0.1" ...

$ Trans.Fat : num 0 0 0 0 0.1 2 0.4 0.2 3 0.5 ...

$ Saturated.Fat : num 0 0 0 0 0 0.1 0 0 0.2 0 ...

$ Sodium : int 0 0 0 0 5 15 0 5 25 0 ...

$ Total.Carbohydrates: int 5 10 10 10 75 85 65 120 135 105 ...

$ Cholesterol : int 0 0 0 0 10 10 6 15 15 10 ...

$ Dietary.Fibre : int 0 0 0 0 0 0 1 0 0 1 ...

$ Sugars : int 0 0 0 0 9 9 4 14 14 6 ...

$ Protein : num 0.3 0.5 1 1 6 6 5 10 10 8 ...

$ Vitamin.A : chr "0%" "0%" "0%" "0%" ...

$ Vitamin.C : chr "0%" "0%" "0%" "0%" ...

.

8 / 85

Solution

3) Use summarise() to compute for each beverage category the average number of calories and the number
of different declinations (there is 1 row per declination)

starbucks %>%

 group_by(Beverage_category) %>%

 summarise(Declinations = n(),

 Mean_cal = mean(Calories))

A tibble: 9 x 3

Beverage_category Declinations Mean_cal

<chr> <int> <dbl>

1 Classic Espresso Drinks 58 140.

2 Coffee 4 4.25

3 Frappuccino® Blended Coffee 36 277.

4 Frappuccino® Blended Crème 13 233.

5 Frappuccino® Light Blended Coffee 12 162.

6 Shaken Iced Beverages 18 114.

7 Signature Espresso Drinks 40 250

8 Smoothies 9 282.

9 Tazo® Tea Drinks 52 177.

9 / 85

Solution

4) Create a subset of the data called maxcal containing the variables Beverage_category, Beverage_prep,
and Calories, for the 10 observations with the highest calorie values

maxcal <- starbucks %>%

 arrange(-Calories) %>%

 select(Beverage_category, Beverage_prep, Calories) %>%

 filter(row_number() <= 10)

maxcal

Beverage_category Beverage_prep Calories

1 Signature Espresso Drinks 2% Milk 510

2 Signature Espresso Drinks Soymilk 460

3 Frappuccino® Blended Coffee Whole Milk 460

4 Signature Espresso Drinks Venti Nonfat Milk 450

5 Tazo® Tea Drinks 2% Milk 450

6 Frappuccino® Blended Coffee Soymilk 430

7 Frappuccino® Blended Coffee Venti Nonfat Milk 420

8 Signature Espresso Drinks 2% Milk 400

9 Tazo® Tea Drinks Soymilk 390

10 Frappuccino® Blended Coffee Whole Milk 390

10 / 85

1. The ggplot() function
1.1. Basic structure
1.2. Axes
1.3. Theme
1.4. Annotation

2. Adding dimensions
2.1. More axes
2.2. More facets
2.3. More labels

3. Types of geometry
3.1. Points and lines
3.2. Barplots and histograms
3.3. Densities and boxplots

4. How (not) to lie with graphics
4.1. Cumulative representations
4.2. Axis manipulations
4.3. Interpolation

5. Wrap up!

Today we learn how to plot data

11 / 85

https://louissirugue.github.io/intro_to_R/home.html

1. The ggplot() function
1.1. Basic structure
1.2. Axes
1.3. Theme
1.4. Annotation

Today we learn how to plot data

12 / 85

https://louissirugue.github.io/intro_to_R/home.html

1. The ggplot() function

1.1. Basic structure

Let's use ggplot on data from the World Inequality database

wid <- read.csv("C:/User/Documents/wid.csv")

str(wid)

'data.frame': 1610 obs. of 6 variables:

$ country : chr "Algeria" "Algeria" "Algeria" "Algeria" ...

$ continent: chr "Africa" "Africa" "Africa" "Africa" ...

$ year : int 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 ...

$ fshare : num 0.0992 0.112 0.1201 0.1206 0.116 ...

$ top1 : num 0.1003 0.0991 0.0991 0.0991 0.0991 ...

$ inc_head : num 12611 12620 12634 12532 12546 ...

It contains 1610 observations and 6 variables:
continent/country/year: Observation level
f_share: Female labor income share
top1: Top 1% income share
inc_head: Per adult national income

13 / 85

https://wid.world/
https://louissirugue.github.io/intro_to_R/home.html

1. The ggplot() function

1.1. Basic structure

ggplot() from ggplot2 is what we're gonna use for all our plots
It takes the following core arguments:

Data: the values to plot
Mapping (aes, for aesthetics): the structure of the plot
Geometry: the type of plot

Data and mapping should be specified within the parentheses
Geometry and any other element should be added with a + sign

ggplot(data, aes()) + geometry + anything_else

You can also apply the ggplot() function to your data with a pipe

data %>% ggplot(aes()) + geometry

14 / 85

https://louissirugue.github.io/intro_to_R/home.html

We assigned data to ggplot()
But our plot is empty

1. The ggplot() function

1.1. Basic structure

ggplot(wid) # Data

#

15 / 85

https://louissirugue.github.io/intro_to_R/home.html

We assigned data to ggplot()
But our plot is empty

We assigned variables to axes
But still nothing

1. The ggplot() function

1.1. Basic structure

ggplot(wid, aes(x = inc_head, y = top1)) # Data & aesthetics

#

16 / 85

https://louissirugue.github.io/intro_to_R/home.html

We assigned data to ggplot()
But our plot is empty

We assigned variables to axes
But still nothing

We need a geometry
Points for instance

1. The ggplot() function

1.1. Basic structure

ggplot(wid, aes(x = inc_head, y = top1)) + # Data & aesthetics

 geom_point() # Geometry

17 / 85

https://louissirugue.github.io/intro_to_R/home.html

1. The ggplot() function

1.1. Basic structure

You can the save the plot using the ggsave() function
You just need to specify the output destination and it will save what is in your plot panel

ggsave("C:/User/Documents/wid.png")

You can also modify the following options, which take the parameters of your plot panel if unspecified:
plot: ggplot object
width: width of the plot
height: height of the plot
unit: unit of the plot size ("in", "cm", "mm", "px")
dpi: pixel density, default to 300px/in

ggsave("wid.png", plot = last_plot(), width = 16, height = 9, unit = "cm", dpi = 900)

18 / 85

https://louissirugue.github.io/intro_to_R/home.html

1. The ggplot() function

1.2. Axes

Axes can be modified with scale functions, whose names depend on:
The axis to modify
The type of variable assigned to the axis

Basic scale functions
Axis x-axis y-axis

Continuous scale_x_continuous() scale_y_continuous()

Discrete scale_x_discrete() scale_y_discrete()

The following parameters can be modified in these scale functions:
name: The label of the corresponding axis
limits: Where the axis should start and end
breaks: Where to put ticks and values on the axis

19 / 85

https://louissirugue.github.io/intro_to_R/home.html

1. The ggplot() function

1.2. Axes

ggplot(wid, aes(x = inc_head, y = top1)) + geom_point() # Basic structure

#

20 / 85

https://louissirugue.github.io/intro_to_R/home.html

1. The ggplot() function

1.2. Axes

ggplot(wid, aes(x = inc_head, y = top1)) + geom_point() + # Basic structure

 scale_x_continuous(name = "Income per adult", limits = c(0, 150000)) # Scale function

21 / 85

https://louissirugue.github.io/intro_to_R/home.html

1. The ggplot() function

1.3. Theme()

You can use one of the default R themes to easily change the layout of your plot
... + theme_bw()
... + theme_minimal()
... + theme_dark()
You can also tune the font size inside these functions with the base_size argument

22 / 85

https://louissirugue.github.io/intro_to_R/home.html

1. The ggplot() function

1.3. Theme()

You can also custom your graph using the theme() function
It allows to custom virtually anything
Enter ?theme to see the endless list of possible arguments
Obviously we won't go through all of them but here are a few

Basic structure

ggplot(wid, aes(x = inc_head, y = top1)) + geom_point() +

Axis

 scale_x_continuous(name = "Income per adult", limits = c(0, 150000)) +

Theme

 theme_minimal(base_size = 14) +

 theme(# Color of the background and of its border

 plot.background = element_rect(fill = "#DFE6EB", colour = "#DFE6EB"),

Size of the axis lines

 axis.line = element_line(size = rel(0.8)),

Color of the grid lines

 panel.grid = element_line(color = "gray85"))

23 / 85

https://louissirugue.github.io/intro_to_R/home.html

1. The ggplot() function

1.3. Theme()

24 / 85

https://louissirugue.github.io/intro_to_R/home.html

ggplot(wid, aes(x = inc_head, y = top1)) +

 geom_point(size = 3,

 color = "#6794A7",

 alpha = .3,

 shape = 18) +

 theme_minimal(base_size = 14)

1. The ggplot() function

1.3. Theme()

Geometries can also be modified
alpha: opacity from 0 to 1
color: color of the geometry (for geometries that are filled such as bars, it will color the border)
fill: fill color for geometries such as bars
size: size of the geometry
shape: change shape for geometries like points
linetype: solid, dashed, dotted, etc., for line geometries
...

25 / 85

https://louissirugue.github.io/intro_to_R/home.html

1. The ggplot() function

1.4. Annotation

It is sometimes useful to annotate a graph so that certain things become more salient
Separate two groups with a dashed line
Add a few words somewhere for clarity
Circle a specific group of data points
Add labels to data points

Straight lines can easily be added with their respective geometry

+ geom_hline(yintercept = , linetype =)

+ geom_vline(xintercept = , linetype =)

And punctual text annotations can be added with annotate()

+ annotate("text", x = , y = , label =)

26 / 85

https://louissirugue.github.io/intro_to_R/home.html

ggplot(wid, aes(x = inc_head, y = top1)) +

 geom_point(size = 2, alpha = .3) +

 geom_hline(yintercept = .17)

ggplot(wid, aes(x = inc_head, y = top1)) +

 geom_point(size = 2, alpha = .3) +

 geom_vline(xintercept = 90000,

 linetype = "dashed")

1. The ggplot() function

1.4. Annotation: Adding lines

27 / 85

https://louissirugue.github.io/intro_to_R/home.html

1. The ggplot() function

1.4. Annotation: Adding text

ggplot(wid, aes(x = inc_head, y = top1)) + geom_point(size = 2, alpha = .3) +

 annotate("text", x = 125000, y = .28, label = "Relevant info", size = 5)

28 / 85

https://louissirugue.github.io/intro_to_R/home.html

1. The ggplot() function

Combining everything

ggplot(wid, aes(x = inc_head, y = top1))

#

#

#

#

#

#

#

29 / 85

https://louissirugue.github.io/intro_to_R/home.html

1. The ggplot() function

Combining everything

ggplot(wid, aes(x = inc_head, y = top1)) +

 geom_point(size = 3, color = "#6794A7", alpha = .3, shape = 18)

#

#

#

#

#

#

30 / 85

https://louissirugue.github.io/intro_to_R/home.html

1. The ggplot() function

Combining everything

ggplot(wid, aes(x = inc_head, y = top1)) +

 geom_point(size = 3, color = "#6794A7", alpha = .3, shape = 18) +

 geom_vline(xintercept = 90000, linetype = "dashed", size = 1, color = "#727272")

#

#

#

#

#

31 / 85

https://louissirugue.github.io/intro_to_R/home.html

1. The ggplot() function

Combining everything

ggplot(wid, aes(x = inc_head, y = top1)) +

 geom_point(size = 3, color = "#6794A7", alpha = .3, shape = 18) +

 geom_vline(xintercept = 90000, linetype = "dashed", size = 1, color = "#727272") +

 annotate("text", x = 125000, y = .2, label = "Outliers", size = 5, color = "#505050")

#

#

#

#

32 / 85

https://louissirugue.github.io/intro_to_R/home.html

1. The ggplot() function

Combining everything

ggplot(wid, aes(x = inc_head, y = top1)) +

 geom_point(size = 3, color = "#6794A7", alpha = .3, shape = 18) +

 geom_vline(xintercept = 90000, linetype = "dashed", size = 1, color = "#727272") +

 annotate("text", x = 125000, y = .2, label = "Outliers", size = 5, color = "#505050") +

 scale_x_continuous(name = "Income per adult", limits = c(0, 150000))

#

#

#

33 / 85

https://louissirugue.github.io/intro_to_R/home.html

1. The ggplot() function

Combining everything

ggplot(wid, aes(x = inc_head, y = top1)) +

 geom_point(size = 3, color = "#6794A7", alpha = .3, shape = 18) +

 geom_vline(xintercept = 90000, linetype = "dashed", size = 1, color = "#727272") +

 annotate("text", x = 125000, y = .2, label = "Outliers", size = 5, color = "#505050") +

 scale_x_continuous(name = "Income per adult", limits = c(0, 150000)) +

 scale_y_continuous(name = "Top 1% inc. share", limits = c(0, .35))

#

#

34 / 85

https://louissirugue.github.io/intro_to_R/home.html

1. The ggplot() function

Combining everything

ggplot(wid, aes(x = inc_head, y = top1)) +

 geom_point(size = 3, color = "#6794A7", alpha = .3, shape = 18) +

 geom_vline(xintercept = 90000, linetype = "dashed", size = 1, color = "#727272") +

 annotate("text", x = 125000, y = .2, label = "Outliers", size = 5, color = "#505050") +

 scale_x_continuous(name = "Income per adult", limits = c(0, 150000)) +

 scale_y_continuous(name = "Top 1% inc. share", limits = c(0, .35)) +

 theme_minimal(base_size = 14)

#

35 / 85

https://louissirugue.github.io/intro_to_R/home.html

1. The ggplot() function

Combining everything

ggplot(wid, aes(x = inc_head, y = top1)) +

 geom_point(size = 3, color = "#6794A7", alpha = .3, shape = 18) +

 geom_vline(xintercept = 90000, linetype = "dashed", size = 1, color = "#727272") +

 annotate("text", x = 125000, y = .2, label = "Outliers", size = 5, color = "#505050") +

 scale_x_continuous(name = "Income per adult", limits = c(0, 150000)) +

 scale_y_continuous(name = "Top 1% inc. share", limits = c(0, .35)) +

 theme_minimal(base_size = 14) +

 theme(plot.background = element_rect(fill = "#DFE6EB", colour = "#DFE6EB"))

36 / 85

https://louissirugue.github.io/intro_to_R/home.html

1. The ggplot() function ✔
1.1. Basic structure
1.2. Axes
1.3. Theme
1.4. Annotation

2. Adding dimensions
2.1. More axes
2.2. More facets
2.3. More labels

3. Types of geometry
3.1. Points and lines
3.2. Barplots and histograms
3.3. Densities and boxplots

4. How (not) to lie with graphics
4.1. Cumulative representations
4.2. Axis manipulations
4.3. Interpolation

5. Wrap up!

Overview

37 / 85

https://louissirugue.github.io/intro_to_R/home.html

1. The ggplot() function ✔
1.1. Basic structure
1.2. Axes
1.3. Theme
1.4. Annotation

2. Adding dimensions
2.1. More axes
2.2. More facets
2.3. More labels

Overview

38 / 85

https://louissirugue.github.io/intro_to_R/home.html

2. Adding dimensions

2.1. More axes

In some cases you may want to convey information using other means than position on an axis
The color, size, or shape of a geometry can be used to represent a third variable

We can assign different colors to different points depending on the associated continent
Continent should be assigned to the "color axis" in aes()

ggplot(wid, aes(x = inc_head, y = top1, color = continent)) + geom_point(alpha = .3)

39 / 85

https://louissirugue.github.io/intro_to_R/home.html

2. Adding dimensions

2.1. More axes

If the variable assigned to the color axis is continuous, a color gradient will be used

ggplot(wid, aes(x = inc_head, y = top1, color = fshare)) + geom_point(alpha = .3)

40 / 85

https://louissirugue.github.io/intro_to_R/home.html

Discrete color variable

plot + scale_color_manual(

 name = "Title", values = c("red", "blue")

)

Continuous color variable

plot + scale_color_gradient(

 name = "Title", low = "red", high = "blue"

)

2. Adding dimensions

2.1. More axes

Because there is no proper "color axis", a legend is generated
It can be seen as a "color" axis, just like the x- and y-axis
And should then be modified with a scale function

But color is not the only property that can be used as a dimension, you can use:
size, shape, alpha, ...
fill, linetype, ..., for relevant geometries

41 / 85

https://louissirugue.github.io/intro_to_R/home.html

42 / 85

https://louissirugue.github.io/intro_to_R/home.html

As well as which scale should be:
free: adjusted separately to each facet
fixed: common to all facets

scales argument in facet_wrap()
x fixed x free

y fixed scales = "fixed" scales = "free_x"

y free scales = "free_y" scales = "free"

2. Adding dimensions

2.2. More facets

Another way to distinguish groups is to divide the plot into facets
To do so, indicate your faceting variable into the facet_wrap() function

In facet_wrap(), the faceting variable must be preceded by a tilde as the first argument:

ggplot(wid, aes(x = inc_head, y = top1)) + geom_point() +

 facet_wrap(~continent)

You can then choose the facet arrangement:
nrow to indicate the number of rows
ncol to indicate the number of columns

43 / 85

https://louissirugue.github.io/intro_to_R/home.html

2. Adding dimensions

2.2. More facets

ggplot(wid, aes(x = inc_head, y = top1)) + geom_point(alpha = .3) +

 facet_wrap(~continent, ncol = 3, scales = "free_x")

44 / 85

https://louissirugue.github.io/intro_to_R/home.html

2. Adding dimensions

2.3. More labels

The last dimension I want to mention is the label axis
When using geom_text() instead of geom_point(), it will plot the corresponding text instead of points

ggplot(wid %>% filter(year == 2019 & continent == "Europe"), # subset so that we can see something

 aes(x = inc_head, y = top1, label = country)) + geom_text(alpha = .6)

45 / 85

https://louissirugue.github.io/intro_to_R/home.html

Practice

1) Reproduce this graph with the starbucks dataset

You've got 10 minutes!
46 / 85

10:00

Solution

ggplot(starbucks,

 aes(x = Calories, y = Cholesterol))

#

#

#

47 / 85

Solution

ggplot(starbucks,

 aes(x = Calories, y = Cholesterol)) +

 geom_point()

#

#

48 / 85

Solution

ggplot(starbucks,

 aes(x = Calories, y = Cholesterol, size = Trans.Fat, color = Sugars)) +

 geom_point()

#

#

49 / 85

Solution

ggplot(starbucks,

 aes(x = Calories, y = Cholesterol, size = Trans.Fat, color = Sugars)) +

 geom_point(alpha = .3) +

 scale_color_gradient(low = "green", high = "red")

#

50 / 85

Solution

ggplot(starbucks,

 aes(x = Calories, y = Cholesterol, size = Trans.Fat, color = Sugars)) +

 geom_point(alpha = .3) +

 scale_color_gradient(low = "green", high = "red") +

 theme_minimal(base_size = 14)

51 / 85

1. The ggplot() function ✔
1.1. Basic structure
1.2. Axes
1.3. Theme
1.4. Annotation

2. Adding dimensions ✔
2.1. More axes
2.2. More facets
2.3. More labels

3. Types of geometry
3.1. Points and lines
3.2. Barplots and histograms
3.3. Densities and boxplots

4. How (not) to lie with graphics
4.1. Cumulative representations
4.2. Axis manipulations
4.3. Interpolation

5. Wrap up!

Overview

52 / 85

https://louissirugue.github.io/intro_to_R/home.html

1. The ggplot() function ✔
1.1. Basic structure
1.2. Axes
1.3. Theme
1.4. Annotation

2. Adding dimensions ✔
2.1. More axes
2.2. More facets
2.3. More labels

3. Types of geometry
3.1. Points and lines
3.2. Barplots and histograms
3.3. Densities and boxplots

Overview

53 / 85

https://louissirugue.github.io/intro_to_R/home.html

3. Types of geometry

3.1. Points and lines

So far we only represented scatterplots, but many other geometries can be used
For instance, lines are particularly suited for evolutions over time

ggplot(wid %>% filter(country == "USA"), aes(x = year, y = top1)) +

 geom_point() + geom_line()

54 / 85

https://louissirugue.github.io/intro_to_R/home.html

3. Types of geometry

3.2. Barplots and histograms

Barplots however are great for categorical variables and continuous variables
Setting the stat argument to "identity" allows to display the corresponding y value

ggplot(wid %>% filter(continent == "South America" & year == 2019),

 aes(x = country, y = top1)) + geom_bar(stat = "identity")

x y

55 / 85

https://louissirugue.github.io/intro_to_R/home.html

3. Types of geometry

3.2. Barplots and histograms

Note that you can reorder the bars according to their y value using the reorder() function

ggplot(wid %>% filter(continent == "South America" & year == 2019),

 aes(x = reorder(country, top1), y = top1)) + geom_bar(stat = "identity")

56 / 85

https://louissirugue.github.io/intro_to_R/home.html

3. Types of geometry

3.2. Barplots and histograms

You can also set stat to "count" to plot the number of observations per category
In that case, no variable should be assigned to the y axis

ggplot(wid, aes(x = continent)) + geom_bar(stat = "count")

57 / 85

https://louissirugue.github.io/intro_to_R/home.html

3. Types of geometry

3.2. Barplots and histograms

Finally, histograms can be used to describe the distribution of a continuous variable
You can tune the bin width with binwidth or the number of bins with bins

ggplot(wid %>% filter(year == 2019), aes(x = fshare)) +

 geom_histogram(bins = 20, color = "white", fill = "steelblue")

58 / 85

https://louissirugue.github.io/intro_to_R/home.html

3. Types of geometry

3.3. Densities and boxplots

The continuous equivalent of the histogram is the density
Similarly you can tune the bandwidth with the bw argument (don't do it)

ggplot(wid %>% filter(year == 2019), aes(x = fshare)) +

 geom_density(color = "white", fill = "steelblue")

59 / 85

https://louissirugue.github.io/intro_to_R/home.html

3. Types of geometry

3.3. Densities and boxplots

A handy geometry to plot densities for different groups is the violin
Note that the grouping variable should be assigned to the axis

ggplot(wid %>% filter(year == 2019), aes(x = continent, y = fshare)) +

 geom_violin(color = "white", fill = "steelblue")

x

60 / 85

https://louissirugue.github.io/intro_to_R/home.html

3. Types of geometry

3.3. Densities and boxplots

Violins are particularly interesting when combined with boxplots
When overlaying these geometries, make sure to tune the width and opacity appropriately

ggplot(wid %>% filter(year == 2019), aes(x = continent, y = fshare)) +

 geom_violin(fill = "steelblue", alpha = .4) + geom_boxplot(width = .1, alpha = .4)

61 / 85

https://louissirugue.github.io/intro_to_R/home.html

3. Types of geometry

3.3. Densities and boxplots

This is how boxplots are constructed:

62 / 85

https://louissirugue.github.io/intro_to_R/home.html

3. Types of geometry

3.3. Densities and boxplots

This is how boxplots are constructed:

63 / 85

https://louissirugue.github.io/intro_to_R/home.html

3. Types of geometry

3.3. Densities and boxplots

This is how boxplots are constructed:

64 / 85

https://louissirugue.github.io/intro_to_R/home.html

3. Types of geometry

3.3. Densities and boxplots

This is how boxplots are constructed:

65 / 85

https://louissirugue.github.io/intro_to_R/home.html

1. The ggplot() function ✔
1.1. Basic structure
1.2. Axes
1.3. Theme
1.4. Annotation

2. Adding dimensions ✔
2.1. More axes
2.2. More facets
2.3. More labels

3. Types of geometry ✔
3.1. Points and lines
3.2. Barplots and histograms
3.3. Densities and boxplots

4. How (not) to lie with graphics
4.1. Cumulative representations
4.2. Axis manipulations
4.3. Interpolation

5. Wrap up!

Overview

66 / 85

https://louissirugue.github.io/intro_to_R/home.html

1. The ggplot() function ✔
1.1. Basic structure
1.2. Axes
1.3. Theme
1.4. Annotation

2. Adding dimensions ✔
2.1. More axes
2.2. More facets
2.3. More labels

3. Types of geometry ✔
3.1. Points and lines
3.2. Barplots and histograms
3.3. Densities and boxplots

4. How (not) to lie with graphics
4.1. Cumulative representations
4.2. Axis manipulations
4.3. Interpolation

Overview

67 / 85

https://louissirugue.github.io/intro_to_R/home.html

Donald Trump during his daily
coronavirus task force briefing on

April 6, 2020

The legend indicates:
''>1,790,000 tests completed
through April 5''

4. How (not) to lie with graphics

4.1. Cumulative representations

68 / 85

https://louissirugue.github.io/intro_to_R/home.html

Let's take a closer look

''>1,790,000 tests completed
through April 5''

Isn't there something tricky here?

4. How (not) to lie with graphics

4.1. Cumulative representations

69 / 85

https://louissirugue.github.io/intro_to_R/home.html

They plotted the cumulative
number tests!

This makes it look like an
exponential progression

While the daily number of
tests actually did not
increase that exponentially

4. How (not) to lie with graphics

4.1. Cumulative representations

70 / 85

https://louissirugue.github.io/intro_to_R/home.html

What about this increase?

4. How (not) to lie with graphics

4.2. Axis manipulations

71 / 85

https://louissirugue.github.io/intro_to_R/home.html

Same data, but starting from 0

➜ Zooming or unzooming on a
graph can be very misleading

4. How (not) to lie with graphics

4.2. Axis manipulations

72 / 85

https://louissirugue.github.io/intro_to_R/home.html

4. How (not) to lie with graphics

4.2. Axis manipulations

73 / 85

https://louissirugue.github.io/intro_to_R/home.html

Misleading Not misleading

4. How (not) to lie with graphics

4.2. Axis manipulations

74 / 85

https://louissirugue.github.io/intro_to_R/home.html

4. How (not) to lie with graphics

4.2. Axis manipulations

But in this case which is the most adequate representation?

75 / 85

https://louissirugue.github.io/intro_to_R/home.html

4. How (not) to lie with graphics

4.2. Axis manipulations

There is no universal rule, but always pay attention to axes and scales

76 / 85

https://louissirugue.github.io/intro_to_R/home.html

4. How (not) to lie with graphics

4.2. Axis manipulations

⚠ Be very careful with double axes ⚠
You can make them tell basically everything

77 / 85

https://louissirugue.github.io/intro_to_R/home.html

4. How (not) to lie with graphics

4.2. Axis manipulations

Be careful with free scales in facet_wrap() as well
It can make things look more homogeneous than they actually are

78 / 85

https://louissirugue.github.io/intro_to_R/home.html

This line has infinitely many points

But only two of them are correct

4. How (not) to lie with graphics

4.3. Interpolation

Here is the previous graph on the tax increase using a line geometry

79 / 85

https://louissirugue.github.io/intro_to_R/home.html

4. How (not) to lie with graphics

4.3. Interpolation

This figure also has finitely many actual data points but feels more natural
This is because values are sufficiently close to each other to be considered as continuous

80 / 85

https://louissirugue.github.io/intro_to_R/home.html

4. How (not) to lie with graphics

4.3. Interpolation

There is no rule either on when lines should be used or not
But the observation level should be clear on the graph

81 / 85

https://louissirugue.github.io/intro_to_R/home.html

1. The ggplot() function ✔
1.1. Basic structure
1.2. Axes
1.3. Theme
1.4. Annotation

2. Adding dimensions ✔
2.1. More axes
2.2. More facets
2.3. More labels

3. Types of geometry ✔
3.1. Points and lines
3.2. Barplots and histograms
3.3. Densities and boxplots

4. How (not) to lie with graphics ✔
4.1. Cumulative representations
4.2. Axis manipulations
4.3. Interpolation

5. Wrap up!

Overview

82 / 85

https://louissirugue.github.io/intro_to_R/home.html

5. Wrap up!

The 3 core components of the ggplot() function

Component Contribution Implementation

Data Underlying values ggplot(data, | data %>% ggplot(.,

Mapping Axis assignment aes(x = V1, y = V2, ...))

Geometry Type of plot + geom_point() + geom_line() + ...

Any other element should be added with a + sign

ggplot(data, aes(x = V1, y = V2)) +

 geom_point() + geom_line() +

 anything_else()

83 / 85

https://louissirugue.github.io/intro_to_R/home.html

Main customization tools

Item to
customize Main functions

Axes scale_[x/y]_[continuous/discrete]

Baseline theme theme_[void/minimal/.../dark]()

Annotations geom_[[h/v]line/text](),
annotate()

Theme theme(axis.[line/ticks].[x/y] = ...,

Main types of geometry

Geometry Function

Bar plot geom_bar()

Histogram geom_histogram()

Area geom_area()

Line geom_line()

Density geom_density()

Boxplot geom_boxplot()

Violin geom_violin()

Scatter plot geom_point()

5. Wrap up!

84 / 85

https://louissirugue.github.io/intro_to_R/home.html

Main types of aesthetics

Argument Meaning

alpha opacity from 0 to 1

color color of the geometry

fill fill color of the geometry

size size of the geometry

shape shape for geometries like points

linetype solid, dashed, dotted, etc.

If specified in the geometry
It will apply uniformly to all the geometry

If assigned to a variable in aes
It will vary with the variable according to a
scale documented in legend

5. Wrap up!

ggplot(data, aes(x = V1, y = V2, size = V3)) +

 geom_point(color = "steelblue", alpha = .6)

85 / 85

https://louissirugue.github.io/intro_to_R/home.html

