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Quick reminder

1. Regression
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## Call:
## lm(formula = y ~ x, data = data)
H#
## Coefficients:
## (Intercept) X
H# -0.09129 1.01546

* This can be expressed with the regression
equation:

y; = 6+ Bz; + €

e Where @ is the intercept and [ the slope of the
line y; = & + Bx;, and €; the distances between
the points and the line

o COV(.’EZ',yi)
b= Var(z;)
a=1yy —B X &

e a and B minimize &;
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Quick reminder

2. Multivariate regressions

e Adding a second independent variable in the regression amounts to fitting a plane instead of a line
o Adding a third variable would fit a hyperplane of dimension 3 and so on
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Quick reminder

3. Control variables

e Adding a third variable z removes its potential confounding effect from the relationship between x and y
o As we move along the x axis, the third variable remains constant
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Quick reminder

4. Interactions

e Adding an interaction term with z allows to see how the effect of  on y varies with 2z
o If zis discrete, it amounts to regressing y on x separately for each z group
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Today: Inference

1. Asymptotic inference
1.1. Data generating process
1.2. Standardization
1.3. Confidence interval

2. Exact inference
2.1. Standard error
2.2. Student-t distribution
2.3. Confidence interval

3. Hypothesis testing
3.1. P-value
3.2. linearHypothesis()

4. Wrap up!
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1.1. Data generating process
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1.3. Confidence interval
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1. Asymptotic inference

1.1. Data generating process

e In PartI of the course, we distinguished the empirical moments from the theoretical moments
o Like the empirical mean is a finite-sample estimation of the theoretical expected value
o The same principle applies to regression coefficients

e Take our Great Gatsby Curve for instance
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1. Asymptotic inference

1.1. Data generating process

e In PartI of the course, we distinguished the empirical moments from the theoretical moments
o Like the empirical mean is a finite-sample estimation of the theoretical expected value
o The same principle applies to regression coefficients

e Take our Great Gatsby Curve for instance

o Had our sample of countries been a bit different, our coefficients would not be the same
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1. Asymptotic inference

1.1. Data generating process

e In PartI of the course, we distinguished the empirical moments from the theoretical moments
o Like the empirical mean is a finite-sample estimation of the theoretical expected value
o The same principle applies to regression coefficients

e Take our Great Gatsby Curve for instance
o Had our sample of countries been a bit different, our coefficients would not be the same
o But they would all be estimations of a true relationship whose data-generating process is unobserved
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1. Asymptotic inference

1.1. Data generating process

e For simplicity, let's work with a relationship whose DGP is know

o Such that we can understand how estimations from random samples behave relative to the DGP

o Let's generate data in R!

e We can use functions that output random draws from given distributions whose parameters can be chosen

Normal distribution

Uniform distribution

= Sample size, expected value, standard deviation - Sample size, lower bound, upper bound
rnorm(n = 10, mean = 100, sd = 5) runif(n = 10, min = 4, max = 5)

## [1] 103.48482 102.78332 96.55622 ## [1] 4.633493 4.213208 4.129372

## [4] 96.46252 101.82291 103.84266 ## [4] 4.478118 4.924074 4.598761

## [7] 99.43827 104.40554 101.99053 ## [7] 4.976171 4.731793 4.356727

## [10] 96.93987 ## [10] 4.431474
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1. Asymptotic inference

1.1. Data generating process

e Consider the following data generating process:

z ~ N (4, 25)
y=-—-2+04xx+e¢ {sNN(O, 1)
e We can randomly draw 1,000 observations

dt <- tibble(x
e

rnorm(1000, 4, 5),
rnorm(1000, 0, 1),

y -2 + (.4 x x) + e)
Check the empirical moments:
c(mean(dt$x), var(dts$x)) c(mean(dt$e), var(dtsSe))
## [1] 4.127842 26.816044 ## [1] 0.009459055 1.070444754

12/ 86



1. Asymptotic inference

1.1. Data generating process

e Because the randomly drawn sample is finite, it does not match exactly the features of the DGP:
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1.

Asymptotic inference

1.1. Data generating process

e Same thing for the coefficients of the relationship between x and v:

lm(y ~ x, dt)

##
##
##
##
##
##
##

e But what would happen if we were to redo this operation many times?

Call:
Im(formula = y ~ x, data = dt)

Coefficients:
(Intercept) X
-2.0044 0.4033

1. Draw a random sample from the DGP
2. Compute the slope of the regression of y on x
3. Do it many times and store the coefficients
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1. Asymptotic inference

1.1. Data generating process

e We can use a loop to do that:
©)

o

O

for (i in 1:1000) {
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1. Asymptotic inference

1.1. Data generating process

e We can use a loop to do that:

o First we create an empty vector
o

O

beta <- c()

for (i in 1:1000) {
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1. Asymptotic inference

1.1. Data generating process

e We can use a loop to do that:
o First we create an empty vector

o Then we put the code in a loop
(@)

beta <- c()
for (i in 1:1000) {

dt_i <- tibble(x
e

y

rnorm(1000, 4, 5),
rnorm(1000, 0, 1),
-2 + (.4 x x) + e)

reg_i <- lm(y ~ x, dt_1i)
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1. Asymptotic inference

1.1. Data generating process

e We can use a loop to do that:
o First we create an empty vector
o Then we put the code in a loop
o And we fill the vector at each iteration

beta <- c()
for (i in 1:1000) {

dt_i <- tibble(x rnorm(1000, 4, 5),
e = rnorm(1000, 0, 1),
y = -2 + (.4 x x) + e)

reg_i <- lm(y ~ x, dt_1i)

beta <- c(beta, reg_is$coefficients[2])
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#
1. Asymptotic inference

1.1. Data generating process

* We now have 1,000 slope coefficients from 1,000 random samples of the same DGP

Some random samples give

higher estimates than others
100

But on expectation we get the
right coefficient!

count

50

The (s actually follow a normal
distribution

And at the limit their mean would

: . converge towards 3
0.38 0.39 0.40 0.41 042 0.43
beta
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1. Asymptotic inference

1.2. Standardization

e That is crucial information because it allows to get back to something we know:

o

o

O
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0.38 0.39 0.40 0.41 0.42
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1. Asymptotic inference

1.2. Standardization

e That is crucial information because it allows to get back to something we know:
o By subtracting 3 from the distribution of 3

o

O

60

N
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0.0 0.1 0.2 0.3 0.4
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1. Asymptotic inference

1.2. Standardization

e That is crucial information because it allows to get back to something we know:

o By subtracting £ from the distribution of 8
o And dividing by the standard deviation of 8

O
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22/ 86



1. Asymptotic inference

1.2. Standardization

e That is crucial information because it allows to get back to something we know:
o By subtracting 3 from the distribution of 3

o And dividing by the standard deviation ofB
o With an infinite sample we would obtain the standard normal distribution
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1. Asymptotic inference

1.3. Confidence interval

e \We can use the fact that we know the standard normal distribution:

(@)
(0]

(@)

| b=F N(0,1)
SD(8)

0.2
0.1

0.0
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1. Asymptotic inference

1.3. Confidence interval

e \We can use the fact that we know the standard normal distribution:
o That 99% of the distribution lie between + 2.58

o

O

0.4

b5 ~ N(0,1)

SD(B)
0.2 Pr|—2.58 < 5 _AB < 2.58| ~ 99%
SD(p)

0.1

0.0

-3.00 -2.58 -2.00 -1.00 0.00 1.00 2.00 2.58 3.00
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1. Asymptotic inference

1.3. Confidence interval

e \We can use the fact that we know the standard normal distribution:
o That 99% of the distribution lie between + 2.58
o That 95% of the distribution lie between + 1.96

O

=P ~ N(0,1)
SD(5)
Pr|—1.96 < b-F <1.96| ~ 95%

SD(8)

0.1

0.0

-3.00 -1.96 -1.00 0.00 1.00 1.96 3.00
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1. Asymptotic inference

1.3. Confidence interval

e \We can use the fact that we know the standard normal distribution:

0.4
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0.2

0.1

0.0

o That 99% of the distribution lie between + 2.58
o That 95% of the distribution lie between + 1.96

o This is what allows to determine confidence intervals
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b=F N(0,1)
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Pr|—-1.96 < 5_?
SD()
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Confidence interval

< 1.96| ~ 95%
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1. Asymptotic inference

1.3. Confidence interval

Pr [1.96 L _AB < 1.96] ~ 95%
SD(B)
Pr [—1.96 x <B—B<1.96 x } ~ 95%

Pr [—1.96 x SD(B) < —pB < 1.96 x SD(B) } ~ 95%

A

Pr[ 1.96 xSD(B) B B 1.96 x SD(B) B} ~ 95%

Clyso, : B +1.96 x SD(B)
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Overview

1. Asymptotic inference v
1.1. Data generating process
1.2. Standardization
1.3. Confidence interval

2. Exact inference
2.1. Standard error
2.2. Student-t distribution
2.3. Confidence interval

3. Hypothesis testing
3.1. P-value
3.2. linearHypothesis()

4. Wrap up!
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Overview

1. Asymptotic inference v
1.1. Data generating process
1.2. Standardization
1.3. Confidence interval

2. Exact inference
2.1. Standard error
2.2. Student-t distribution
2.3. Confidence interval
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2. Exact inference

2.1. Standard error

n

e In the previous section I used phrases like "at the limit" or "with an infinite sample
o Butin practice this is not the case, so things behave slightly differently
o And this implies to make a few statistical adjustments to account for that

B +1.96 x

 First we cannot measure directly the standard deviation of 3

o Indeed in practice we have only one observation of 3, not its whole distribution
o But like for the mean, we can compute a standard error instead

Standard deviation Standard error
- Measures the amount of variability, or dispersion, - Measures how far an estimate from a given sample is
from the individual data values to the mean likely to be from the true parameter of interest
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2. Exact inference

2.1. Standard error

e We won't go through the theoretical computations together, but let's have a look at the formula:

se(ﬁ) = Var(ﬂ) - (,n _ #pa,rameterS) 2?21 (337, - 3_3)2

e Notice that the variance, and thus the standard error of our estimate, decreases as:
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2. Exact inference

2.1. Standard error

e We won't go through the theoretical computations together, but let's have a look at the formula:

se(ﬁ) = Var(b") - ( _ #pa,rameterS) 2?21 (337, - 3_3)2

e Notice that the variance, and thus the standard error of our estimate, decreases as:
o The gets bigger
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2. Exact inference

2.1. Standard error

e We won't go through the theoretical computations together, but let's have a look at the formula:

e Notice that the variance, and thus the standard error of our estimate, decreases as:
o The number of of observations gets bigger
o The decreases
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2. Exact inference

2.1. Standard error

e We won't go through the theoretical computations together, but let's have a look at the formula:

se(B) = 1/ Var(8) =

(n — #parameters)

¢ Notice that the variance, and thus the standard error of our estimate, decreases as:
o The number of of observations gets bigger
o The number of parameters decreases
o The decreases
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2. Exact inference

2.1. Standard error

e We won't go through the theoretical computations together, but let's have a look at the formula:

- = Z?:l éi2

se(ﬁ) = Var(b") - (,n _ #pa,rameterS) 2?21 (337, - 3_3)2

* Notice that the variance, and thus the standard error of our estimate, decreases as:
o The number of of observations gets bigger
o The number of parameters decreases
o The sum of squared errors decreases relative to the variance of x

e And as the standard error gets bigger, the confidence interval gets bigger:

B+ 1.96 x
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2. Exact inference

2.2. Student-t distribution

e But that's not it, remember that we took the value 1.96 from the normal distribution

A

B+ X Se([;’)

3=
SD(B)

e But the normal distribution is what
0.4
converges to at the limit

* In the finite world, 5(_5) follows a slightly
se

0.3

0.2 flatter distribution

e The Student t distribution, whose precise
shape depends on the number of
observations we have and parameters we

1 | | | 1 | | H
estimate
-3.00 -1.96 -1.00 0.00 1.00 1.96 3.00

0.1

0.0
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2. Exact inference

2.2. Student-t distribution

e The Student ¢ distribution accounts for the fact that the sample is finite
o The lower the number of degrees of freedom (#observations - #parameters) the flatter
o And it tends to a normal distribution as the number of degrees of freedom — o0

0.4
0.3
df
0.2 % ;
| |60
0.1
0.0
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2. Exact inference

2.2. Student-t distribution

e But we know the Student ¢ distributions just as well as the standard normal distribution
o With 100 degrees of freedom, 95% of the distribution lie between 4 1.98

o

0.4

0.3

0.2

0.1

0.0

-3.00

-1.98

-1.00

0.00

1.00

1.98

3.00
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2. Exact inference

2.2. Student-t distribution

e But we know the Student ¢ distributions just as well as the standard normal distribution
o With 100 degrees of freedom, 95% of the distribution lie between 4 1.98
o With 3,000 degrees of freedom, 90% of the distribution lie between 4= 1.65

0.4
0.3
0.2

0.1

0.0

-3.00 -2.00 -1.65 -1.00 0.00 1.00 1.65 2.00 3.00
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2. Exact inference

2.2. Student-t distribution
e So instead of 1.96, we must use the value such that:

o The desired percentage of the distribution is comprised within £ that value...
o For a Student ¢ distribution with the relevant number of degrees of freedom

e We can get these values easily with the qt() function, indicating:
©)

o

qt( , )
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2. Exact inference

2.2. Student-t distribution
e So instead of 1.96, we must use the value such that:

o The desired percentage of the distribution is comprised within £ that value...
o For a Student ¢ distribution with the relevant number of degrees of freedom

e We can get these values easily with the qt() function, indicating:
o The share of the distribution below the value we're looking for (e.g., 0.975 for a 95% CI)

o

qt(.975, )
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2. Exact inference

2.2. Student-t distribution

e So instead of 1.96, we must use the value such that:
o The desired percentage of the distribution is comprised within + that value...
o For a Student ¢ distribution with the relevant number of degrees of freedom

e We can get these values easily with the qt() function, indicating:
o The share of the distribution below the value we're looking for (e.g., 0.975 for a 95% CI)
o The number of degrees of freedom of the Student ¢ distribution (e.g., 88 observations - 2 parameters)

qt(.975, 86)

## [1] 1.987934

* Denote this value t(df);_=

2
o With e equal to 1— the confidence level

o And df the number of degrees of freedom
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2. Exact inference

2.3. Confidence interval

e The formula for the confidence interval in finite sample hence writes:

B4

e The confidence interval increases as:

o The confidence level increases
O

(K
0.3
0.2

0.1

0.0 :

X se(ﬁ)
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2. Exact inference

2.3. Confidence interval

e The formula for the confidence interval in finite sample hence writes:
B+ x se(B)

e The confidence interval increases as:
o The confidence level increases
o The number of degrees of freedom decreases

(K
0.3
0.2

0.1

0.0

45/ 86



Practice [l@ e @@J
1) Import the dataset

2) Regress the IGE on the Gini coefficient and store the estimated regression parameters

3) Compute the 95% confidence interval of the regression slope

B £ t(df)1_s x se(B)

Z?:l é'i2

(n — #parameters) > ", (z; — Z)?

se(B) =

You've got 10 minutes!



Solution

1) Import the dataset

ggcurve <- read.csv("C:/User/Documents/ggcurve.csv'")

2) Regress the IGE on the Gini coefficient and store the regression slope

model <- lm(ige ~ gini, ggcurve)
mode'l

##
## Call:
## lm(formula = 1ige ~ gini, data = ggcurve)

## Coefficients:
## (Intercept) gini
## -0.09129 1.01546

alpha <- model$coefficients[1]

beta <- modelScoefficients[2]




Solution

3) Compute the 95% confidence interval of the regression slope

se_dat <- ggcurve %>%
mutate(fit = alpha + gini * beta, e = ige - fit) %>%

summarise(se = sqrt(sum(e”r2)/((n()-2)*sum((gini-mean(gini))”"2))))

se_datSse

## [1] 0.2642477

beta - se_dat$se * qt(.975, nrow(ggcurve) - 2)

#H gini
## 0.4642511

beta + se_dat$se x qt(.975, nrow(ggcurve) - 2)

#H gini
## 1.566673



Overview

1. Asymptotic inference v
1.1. Data generating process
1.2. Standardization
1.3. Confidence interval

2. Exact inference v
2.1. Standard error
2.2. Student-t distribution
2.3. Confidence interval

3. Hypothesis testing
3.1. P-value
3.2. linearHypothesis()

4. Wrap up!

49/ 86



Overview

1. Asymptotic inference v
1.1. Data generating process
1.2. Standardization
1.3. Confidence interval

2. Exact inference v
2.1. Standard error
2.2. Student-t distribution
2.3. Confidence interval

3. Hypothesis testing
3.1. P-value
3.2. linearHypothesis()

50/ 86



3. Hypothesis testing

3.1. P-value

e We now have the 95% confidence interval for our estimate:
o Qur estimate of Bis 1.02
o And we are 95% sure that 3 lies between 0.46 and 1.57

e Note that in our confidence interval formula:
o The standard error and the relevant Student ¢ distribution are given
o But the confidence level 1 — a was chosen arbitrarily

- Setting a higher confidence level would widen the confidence interval
= Allowing for a lower confidence level would narrow the confidence interval
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3.1

Hypothesis testing

. P-value

So far we framed the problem as:

"What are the values [ is likely to take under a given confidence level?"

But we could also think of it as:

"Under which confidence level is 3 is likely to take a given value?"

And this is actually a very practical way of framing the question:
o To (in)validate the predictions from a theoretical model
o To know under which confidence level § is likely to be #£ 0 at all

- But how to answer such questions in practice?
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3. Hypothesis testing

3.1. P-value

e We can start from the fact that even though we do not know 3, we know that:

B—

P t(df)

se(f)

0.4

0.3

Prob:

0.2

0.1

0.0
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3. Hypothesis testing

3.1. P-value

e And that in this distribution some values are quite plausible:

B _

se(B)
04
03 Prob:
-
0.1
0.0
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3. Hypothesis testing

3.1. P-value

e And some are way less plausible:

@

se(

0.4

0.3

Prob:
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0.1

0.0
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3. Hypothesis testing

3.1. P-value

e But because the distribution is continuous:

(0]

o

0.4

0.3

0.2

0.1

0.0
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3. Hypothesis testing

3.1. P-value

e But because the distribution is continuous:
o The probability to draw any exact value would be 0

o

0.4

0.3

0.2

0.1

0.0
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3. Hypothesis testing

3.1. P-value

e But because the distribution is continuous:
o The probability to draw any exact value would be 0
o We can only compute the probability to fall below that value
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3. Hypothesis testing

3.1. P-value

e But because the distribution is continuous:
o The probability to draw any exact value would be 0
o Or to fall above that value if it is negative

0.4
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0.0
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3. Hypothesis testing

3.1. P-value

e But generally what makes sense is to know what are the chances to fall that far from 0:

(0]

o

0.4

0.3

0.2

0.1

0.0
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3. Hypothesis testing

3.1. P-value

e But generally what makes sense is to know what are the chances to fall that far from 0:

o So we take 1 - the probability to fall below the absolute value
@)

0.4
0.3
0.2

0.1

0.0
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3. Hypothesis testing

3.1. P-value

e But generally what makes sense is to know what are the chances to fall that far from 0:
o So we take 1 - the probability to fall below the absolute value
o And we multiply it by 2

0.4
0.3
0.2

0.1

0.0
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3. Hypothesis testing

3.1. P-value

The resulting area is what we call a p-value
o It is the probability that 3 falls at least as far from ( as the hypothesized value

Consider finding B = 4 and a hypothesizing value of 3 for 8

o A p-value of 5% indicates that there is only a 5% chance to find a B =4if8 =3
o Below that threshold we would reject the hypothesis that 3 = 3 at the 95% confidence level

Notice that in this example, the 95% confidence interval of 8 would not include the value 3
o With a hypothesized value equal to the bound of a confidence interval the p-value would equal 1 - the
corresponding confidence level
o So a p-value lower than a means that the hypothesized value is outside the (1 — a)% confidence interval

= Let's go through a formal example with our data
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3. Hypothesis testing

3.1. P-value

e Can we reject at the 95% confidence level that 8 = 0?

beta
#H# gini
## 1.015462

e We should start by hypothesizing that 3 = 0
o This is what we call the "null hypothesis" H
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3. Hypothesis testing

3.1. P-value

e We should find the area below (3 — 0)/se(S) in a Student ¢ distribution we the right number of df
o (B —0)/se(B) is what we call the t-stat

(beta - 0) / se_datS$se

#H# gini
## 3.842842

* While gqt() gave us the value for a certain probability, pt() gives the the probability for a given value:

(0]

o

pt( , )
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3. Hypothesis testing

3.1. P-value

e We should find the area below (3 — 0)/se(S) in a Student ¢ distribution we the right number of df
o (B —0)/se(B) is what we call the t-stat

(beta - 0) / se_datS$se

#H# gini
## 3.842842

* While gqt() gave us the value for a certain probability, pt() gives the the probability for a given value:
o Putin the t-stat

o

pt((beta - 0) / se_dat$se, )
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3. Hypothesis testing

3.1. P-value

e We should find the area below (3 — 0)/se(S) in a Student ¢ distribution we the right number of df
o (B —0)/se(B) is what we call the t-stat

(beta - 0) / se_datS$se

#H# gini
## 3.842842

* While gqt() gave us the value for a certain probability, pt() gives the the probability for a given value:
o Putin the t-stat
o And the degrees of freedom

pt((beta - 0) / se_dat$se, nrow(ggcurve) - 2)
#H# gini

## 0.9994921
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3. Hypothesis testing

3.1. P-value

e We must then:
o Take 1 - this probability (area above the t-stat)

o

1 - pt(abs((beta - 0) / se_dat$se), nrow(ggcurve) - 2)

#H# gini
## 0.0005078528
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3. Hypothesis testing

3.1. P-value

e We must then:
o Take 1 - this probability (area above the t-stat)
o And multiply it by 2 (consider the absolute distance and not the signed distance)

2 x (1 - pt(abs((beta - 0) / se_dat$se), nrow(ggcurve) - 2))

#H# gini
## 0.001015706

e The p-value is lower than 1%:
o We can reject at the 99% confidence level that 5 = 0

o In that case we say that 3 is significantly different from 0 at the 1% significance level

e But the p-value is greater than 0.1%:
o We cannot reject at the 99.9% confidence level that 3 = 0
o In that case we say that 3 is not significantly different from 0 at the 0.1% significance level
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3. Hypothesis testing

3.1. P-value

e By default, the summary() function tests whether or not each coefficient is significantly different from 0
©)

summary(lm(ige ~ gini, ggcurve))
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3. Hypothesis testing

3.1. P-value

e By default, the summary() function tests whether or not each coefficient is significantly different from 0
o You can extract the information from the $coefficient attribute of the output

summary (lm(ige ~ gini, ggcurve))sScoefficients

#it Estimate Std. Error t value Pr(>|t])
## (Intercept) -0.09129311 0.1287045 -0.7093234 0.486311455
## gini 1.01546204 0.2642477 3.8428420 0.001015706

e For each coefficient it indicates:

o The standard error
o Thet-stat (Hp : B =0)
o The p-value (Hy : 8 = 0)

e The output of the summary() function is great to have a quick overview of the model:

summary(lm(ige ~ gini, ggcurve))
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3. Hypothesis testing

3.1. P-value

##

## Call:

## Im(formula = ige ~ gini, data = ggcurve)

##

## Residuals:

#H# Min 1Q Median 3Q Max
## -0.188991 -0.088238 -0.000855 0.047284 0.252310
##

## Coefficients:

#it Estimate Std. Error t value Pr(>|t])

## (Intercept) -0.09129 0.12870 -0.709 0.48631

## gini 1.01546 0.26425 3.843 0.00102 *x*
## ——-

## Signif. codes: 0O '#xx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
##

## Residual standard error: 0.1159 on 20 degrees of freedom
## Multiple R-squared: 0.4247, Adjusted R-squared: 0.396
## F-statistic: 14.77 on 1 and 20 DF, p-value: 0.001016
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3. Hypothesis testing

3.1. P-value

##

## Call:

## lm(formula = ige ~ gini, data = ggcurve) + Command
##

## Residuals:

#H# Min 1Q Median 3Q Max

## -0.188991 -0.088238 -0.000855 0.047284 0.252310

##

## Coefficients:

#it Estimate Std. Error t value Pr(>|t])

## (Intercept) -0.09129 0.12870 -0.709 0.48631

## gini 1.01546 0.26425 3.843 0.00102 *x*

## ——-

## Signif. codes: 0O '"x*xx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
##

## Residual standard error: 0.1159 on 20 degrees of freedom
## Multiple R-squared: 0.4247, Adjusted R-squared: 0.396
## F-statistic: 14.77 on 1 and 20 DF, p-value: 0.001016
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3. Hypothesis testing

3.1. P-value

H#

## Call:

## lm(formula = ige ~ gini, data = ggcurve) + Command

H#

## Residuals:

#H# Min 1Q Median 3Q Max : .. )
## -0.188991 -0.088238 -0.000855 0.047284 0.252310 + Residuals distribution
H#

## Coefficients:

#it Estimate Std. Error t value Pr(>|t])

## (Intercept) -0.09129 0.12870 -0.709 0.48631

## gini 1.01546 0.26425 3.843 0.00102 *x

H# ——-

## Signif. codes: 0O '"x*xx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

H#

## Residual standard error: 0.1159 on 20 degrees of freedom
## Multiple R-squared: 0.4247, Adjusted R-squared: 0.396
## F-statistic: 14.77 on 1 and 20 DF, p-value: 0.001016
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3. Hypothesis testing

3.1. P-value

##

## Call:

## lm(formula = ige ~ gini, data = ggcurve) + Command

##

## Residuals:

## Min 1Q Median 3Q Max . . .
## -0.188991 -0.088238 -0.000855 0.047284 0.252310 + Residuals distribution
##

## Coefficients:

#it Estimate Std. Error t value Pr(>|t])

## (Intercept) -0.09129  0.12870 -0.709 0.48631 « Coefs, s.e., t-/p-values
## gind 1.01546  0.26425 3.843 0.00102 *x

e —

## Signif. codes: 0O '"x*xx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 0.1159 on 20 degrees of freedom
## Multiple R-squared: 0.4247, Adjusted R-squared: 0.396
## F-statistic: 14.77 on 1 and 20 DF, p-value: 0.001016
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3. Hypothesis testing

3.1. P-value

##

## Call:

## Im(formula = ige ~ gini, data = ggcurve)
##

## Residuals:

## Min 1Q Median 3Q
## -0.188991 -0.088238 -0.000855 0.047284
##

## Coefficients:

#i Estimate Std. Error t value
## (Intercept) -0.09129 0.12870 -0.709
## gini 1.01546 0.26425 3.843
## ——-

## Signif. codes: 0O '#x*x' 0.001 'xx' 0.01
##

##

##
##

Max

0.252310

Pr(>|t])
0.48631

0.00102 *xx*

l*l

0.05

0.1

Residual standard error: 0.1159 on 20 degrees of freedom

Multiple R-squared: 0.4247,

Adjusted R-squared:
F-statistic: 14.77 on 1 and 20 DF, p-value: 0.001016

0.396

1

+«~ Command

+ Residuals distribution

+ Coefs, s.e., t-/p-values

+ Significance
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3. Hypothesis testing

3.1. P-value

##

## Call:

## Im(formula = ige ~ gini, data = ggcurve)
##

## Residuals:

## Min 1Q Median 3Q
## -0.188991 -0.088238 -0.000855 0.047284
##

## Coefficients:

#i Estimate Std. Error t value
## (Intercept) -0.09129 0.12870 -0.709
## gini 1.01546 0.26425 3.843
## ——-

## Signif. codes: 0O '#x*x' 0.001 'xx' 0.01
##

##

##
##

Max

0.252310

Pr(>|t])
0.48631

0.00102 *xx*

l*l

0.05

0.1

Residual standard error: 0.1159 on 20 degrees of freedom

Multiple R-squared: 0.4247,

Adjusted R-squared:
F-statistic: 14.77 on 1 and 20 DF, p-value: 0.001016

0.396

1

+«~ Command

+ Residuals distribution

+ Coefs, s.e., t-/p-values

+ Significance

+« df and advanced stats
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3. Hypothesis testing

3.2. linearHypothesis()

e But the linearHypothesis() function from the car package allows to easily test other hypotheses:
©)

o

linearHypothesis( , )
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3. Hypothesis testing

3.2. linearHypothesis()

e But the linearHypothesis() function from the car package allows to easily test other hypotheses:

© You must provide the model
@)

linearHypothesis(lm(ige ~ gini, ggcurve), )
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3.

Hypothesis testing

3.2. linearHypothesis()

e But the linearHypothesis() function from the car package allows to easily test other hypotheses:

© You must provide the model
o And the hypothesis (referring to coefficients as in the summary)

linearHypothesis(lm(ige ~ gini, ggcurve), "gini = 0")

##
##
##
##
##
##
##
##
##
##
##
##
##

Linear hypothesis test

Hypothesis:
gini = 0

Model 1: restricted model
Model 2: ige ~ gini

Res.Df RSS Df Sum of Sq F Pr(>F)
1 21 0.46733
2 20 0.26883 1 0.1985 14.767 0.001016 *x*
Signif. codes: 0 'xxx' 0.001 'xx' 0.01 'x' 0.65 '.' 0.1 ' '

1
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3. Hypothesis testing

3.2. linearHypothesis()

* You can also test more complex hypotheses
o Like equality between coefficients

linearHypothesis(lm(ige ~ gini, ggcurve), "gini = (Intercept)")

## Linear hypothesis test

##

## Hypothesis:

## - (Intercept) + gini = 0
##

## Model 1: restricted model
## Model 2: 1dge ~ gini

##

#H# Res.Df RSS Df Sum of Sq F Pr(>F)

## 1 21 0.37634

## 2 20 0.26883 1 0.10751 7.9983 0.01039 x*

## ——-

## Signif. codes: 0O '#xx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' '

1
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3. Hypothesis testing

3.2. linearHypothesis()

* You can also test more complex hypotheses
o Like equality between coefficients, or joint hypotheses (relying a generalization of the t-test called F-test)

linearHypothesis(lm(ige ~ gini, ggcurve), c("gini = 0", "(Intercept) = 0"))

## Linear hypothesis test

##

## Hypothesis:

## gini = 0

## (Intercept) = 0

##

## Model 1: restricted model
## Model 2: 1dge ~ gini

##

#H# Res.Df RSS Df Sum of Sq F Pr(>F)

## 1 22 3.8841

## 2 20 0.2688 2 3.6153 134.48 2.523e-12 *%*%

## ——-

## Signif. codes: 0O '"x*xx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
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Overview

1. Asymptotic inference v
1.1. Data generating process
1.2. Standardization
1.3. Confidence interval

2. Exact inference v
2.1. Standard error
2.2. Student-t distribution
2.3. Confidence interval

3. Hypothesis testing v
3.1. P-value
3.2. linearHypothesis()

4. Wrap up!
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4. Wrap up!

Data generating process

e In practice we estimate coefficients on a given realization of a data generating process
o So the true coefficient is unobserved
o But our estimation is informative on the values the true coefficient is likely to take

0.4

0.3

p=b N(0,1)
SD(8)

0.2

0.1

0.0
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4. Wrap up!

Confidence interval

¢ This allows to infer a confidence interval:

B £ t(df); o x se(B)

%

* Where ¢(df);a is the value from a Student ¢ distribution

o With the relevant number of degrees of freedom df (n - #parameters)
o And the desired confidence level 1 — «

e And where se(ﬁA) denotes the standard error of /3:

— = Z?:l &

se(ﬁ) = Var(ﬂ) — (n _ #pa,rameters) 2?21 (337, - 3_3)2
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4. Wrap up!

P-value
e It also allows to test how likely is 8 to be different from a given value:
o If the p-value < 5%, we can reject that 8 equals the hypothesized value at the 95% confidence level
o This threshold, very common in Economics, implies that we have 1 chance out of 20 to be wrong

linearHypothesis(lm(ige ~ gini, ggcurve), "gini = 0")

## Linear hypothesis test

##

## Hypothesis:
## gini = 0

##

## Model 1: restricted model
## Model 2: 1dge ~ gini

##

#H# Res.Df RSS Df Sum of Sq F Pr(>F)

## 1 21 0.46733

## 2 20 0.26883 1 0.1985 14.767 0.001016 *x*

## ——-

## Signif. codes: 0O '#xx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
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