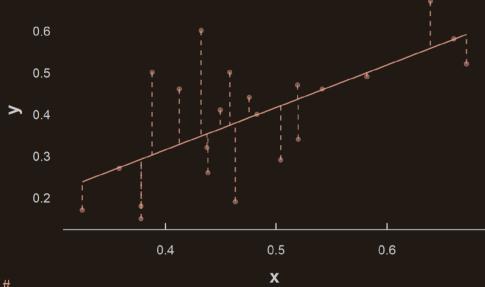


Quick reminder

1. Regression



• This can be expressed with the **regression** equation:

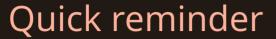
$$y_i = \hat{lpha} + \hat{eta} x_i + \hat{arepsilon_i}$$

• Where $\hat{\alpha}$ is the **intercept** and $\hat{\beta}$ the **slope** of the **line** $\hat{y_i} = \hat{\alpha} + \hat{\beta}x_i$, and $\hat{\varepsilon_i}$ the **distances** between the points and the line

$$\hat{eta} = rac{ ext{Cov}(x_i, y_i)}{ ext{Var}(x_i)}$$

$$\hat{lpha}=ar{y}-\hat{eta} imesar{x}$$

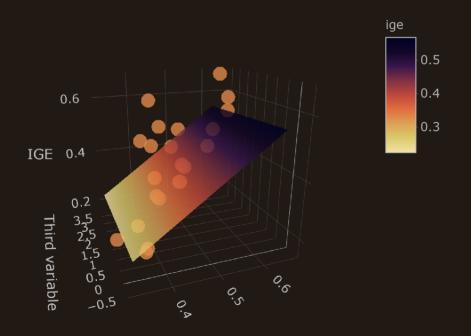
• \hat{lpha} and \hat{eta} minimize $\hat{arepsilon_i}$



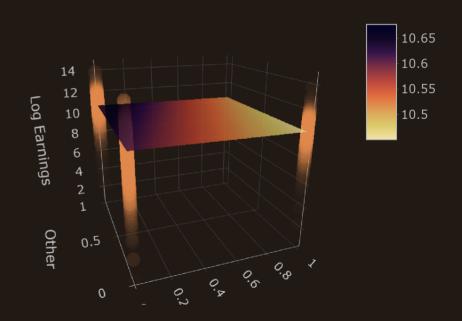
2. Multivariate regressions

- Adding a second independent variable in the regression amounts to fitting a plane instead of a line
 - o Adding a third variable would fit a hyperplane of dimension 3 and so on

Adding a continuous variable



Adding a discrete variable

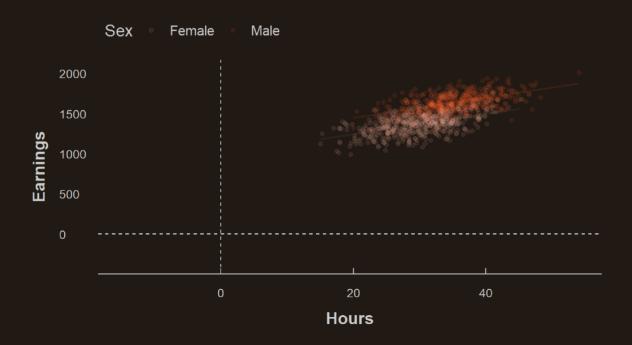


Quick reminder

3. Control variables

- ullet Adding a third variable z **removes** its potential **confounding effect** from the relationship between x and y
 - \circ As we move along the x axis, the **third variable remains constant**

$$\hat{y_i} = \hat{lpha} + \hat{eta_1} x + \hat{eta_2} z + \hat{arepsilon_i}$$

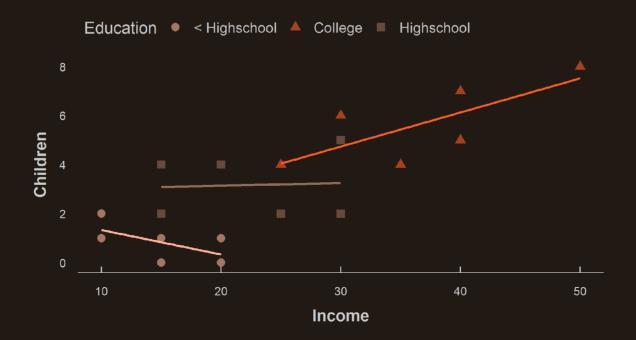


Quick reminder

4. Interactions

• Adding an **interaction** term with z allows to see **how the effect** of x on y varies with z \circ If z is **discrete**, it amounts to **regressing** y on x **separately** for each z group

$$\hat{y_i} = \hat{lpha} + \hat{eta_1} x + \hat{eta_2} z + \hat{eta_3} (x imes z) + \hat{arepsilon_i}$$



Today: Inference

1. Asymptotic inference

- 1.1. Data generating process
- 1.2. Standardization
- 1.3. Confidence interval

2. Exact inference

- 2.1. Standard error
- 2.2. Student-t distribution
- 2.3. Confidence interval

3. Hypothesis testing

- 3.1. P-value
- 3.2. linearHypothesis()

4. Wrap up!

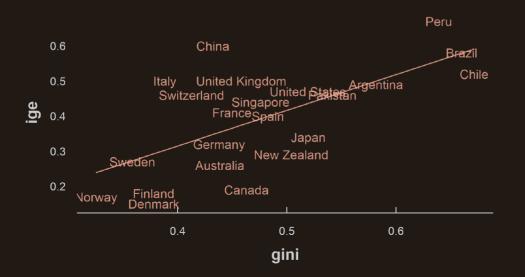
- 1.1. Data generating process
- 1.2. Standardization
- 1.3. Confidence interval

1.1. Data generating process

- In Part I of the course, we distinguished the **empirical moments** from the **theoretical moments**
 - Like the *empirical mean* is a **finite-sample estimation** of the *theoretical expected value*
 - The same principle applies to **regression coefficients**
- Take our Great Gatsby Curve for instance

0

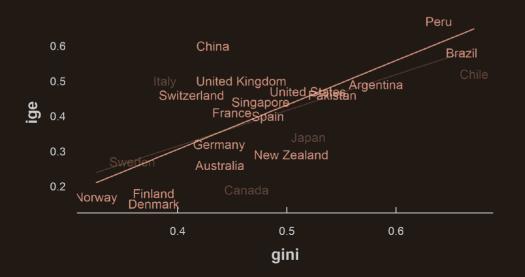
0



1.1. Data generating process

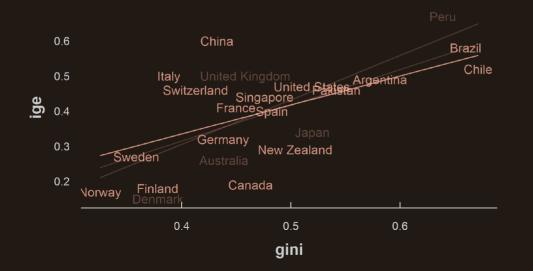
- In Part I of the course, we distinguished the **empirical moments** from the **theoretical moments**
 - Like the *empirical mean* is a **finite-sample estimation** of the *theoretical expected value*
 - The same principle applies to **regression coefficients**
- Take our Great Gatsby Curve for instance
 - Had our **sample** of countries been a bit **different**, our **coefficients** would **not be the same**

0



1.1. Data generating process

- In Part I of the course, we distinguished the **empirical moments** from the **theoretical moments**
 - Like the *empirical mean* is a **finite-sample estimation** of the *theoretical expected value*
 - The same principle applies to **regression coefficients**
- Take our Great Gatsby Curve for instance
 - Had our **sample** of countries been a bit **different**, our **coefficients** would **not be the same**
 - But they would all be **estimations** of a true relationship whose **data-generating** process is **unobserved**



Then how to asses the reliability of our estimation?

1.1. Data generating process

- For **simplicity**, let's work with a relationship whose **DGP** is **know**
 - Such that we can **understand how estimations** from random samples **behave relative to the DGP**
 - Let's **generate data in R!**
- We can use **functions** that output **random draws from given distributions** whose parameters can be chosen

Normal distribution

→ Sample size, expected value, standard deviation

```
rnorm(n = 10, mean = 100, sd = 5)

## [1] 103.48482 102.78332 96.55622
## [4] 96.46252 101.82291 103.84266
## [7] 99.43827 104.40554 101.99053
## [10] 96.93987
```

Uniform distribution

→ Sample size, lower bound, upper bound

```
runif(n = 10, min = 4, max = 5)

## [1] 4.633493 4.213208 4.129372

## [4] 4.478118 4.924074 4.598761

## [7] 4.976171 4.731793 4.356727

## [10] 4.431474
```


1.1. Data generating process

• Consider the following data generating process:

$$y = -2 + 0.4 imes x + arepsilon \ egin{cases} x \sim \mathcal{N}(4,\,25) \ arepsilon \sim \mathcal{N}(0,\,1) \end{cases}$$

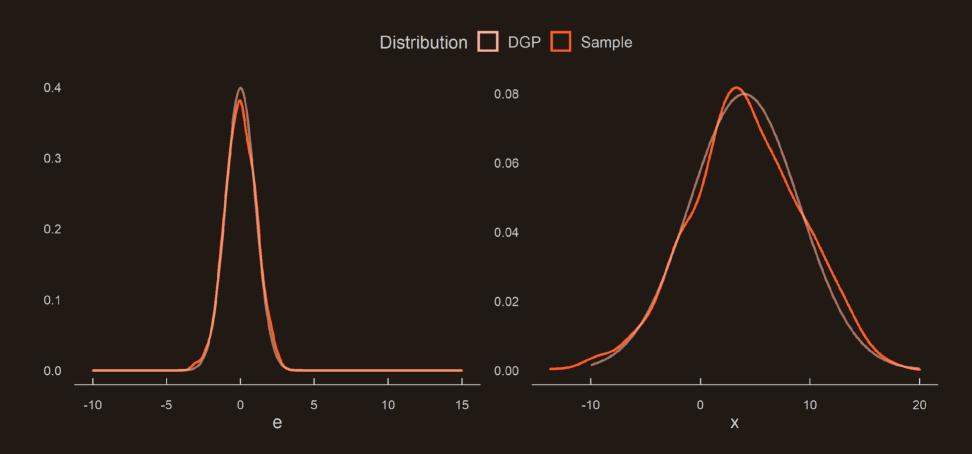
• We can randomly draw **1,000 observations**

Check the empirical moments:

```
c(mean(dt$x), var(dt$x)) c(mean(dt$e), var(dt$e)) 
## [1] 4.127842 26.816044 ## [1] 0.009459055 1.070444754
```


1.1. Data generating process

• Because the randomly drawn **sample is finite**, it **does not match exactly** the features of the DGP:



1.1. Data generating process

• Same thing for the **coefficients** of the relationship between x and y:

- But what would happen if we were to **redo this operation many times?**
 - 1. **Draw a random sample** from the DGP
 - 2. **Compute the slope** of the regression of y on x
 - 3. Do it many times and **store the coefficients**

1.1. Data generating process

• We can **use a loop** to do that:

(

0

0

```
#
for (i in 1:1000) {
#
#
#
#
#
#
#
#
#
}
```


1.1. Data generating process

• We can **use a loop** to do that:

```
First we create an empty vector
```

С

```
beta <- c()
for (i in 1:1000) {

#
#
#
#
#
#
#
}</pre>
```


1.1. Data generating process

- We can **use a loop** to do that:
 - First we create an empty vector
 - Then we put the code in a loop

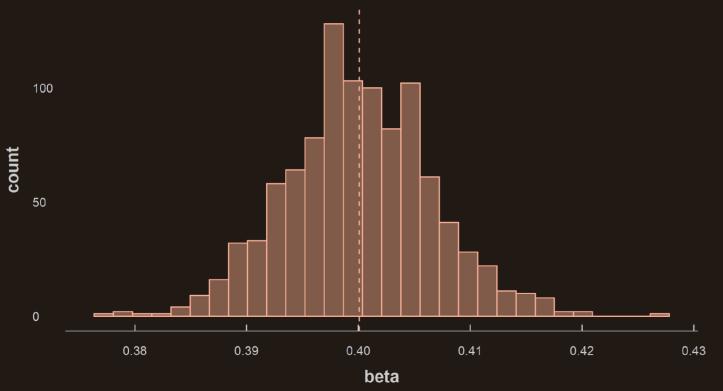
С

1.1. Data generating process

- We can **use a loop** to do that:
 - First we create an empty vector
 - Then we put the code in a loop
 - And we fill the vector at each iteration

1.1. Data generating process

• We now have **1,000 slope coefficients** from 1,000 random samples of the **same DGP**



- Some random samples give higher estimates than others
- But on expectation we get the right coefficient!
- The $\hat{\beta}$ s actually follow a **normal** distribution
- And at the limit their mean would converge towards β

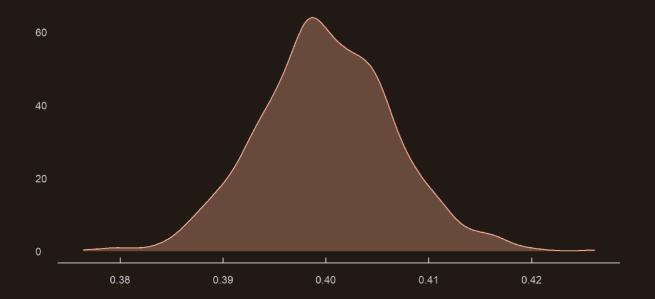
1.2. Standardization

• That is crucial information because it allows to get back to something we know:

C

0

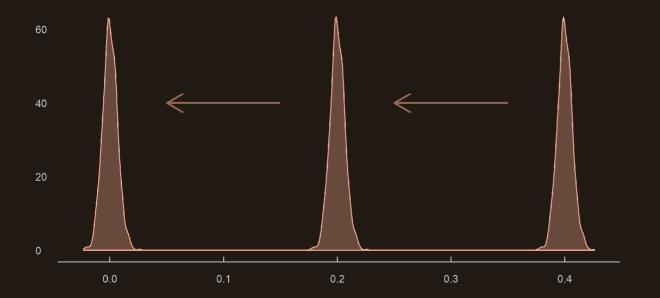
0



 \hat{eta}

1.2. Standardization

- That is crucial information because it allows to get back to something we know:
 - \circ By subtracting eta from the distribution of \hat{eta}
 - 0
 - 0

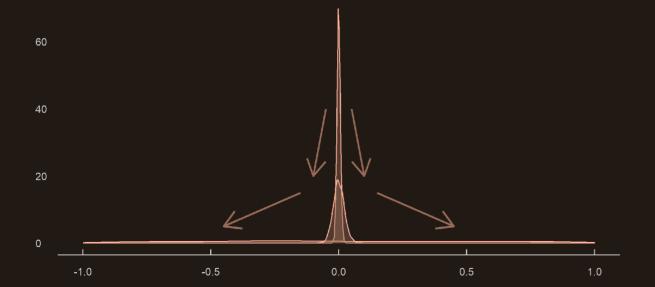


$$\hat{eta} - eta$$

1.2. Standardization

- That is crucial information because it allows to get back to something we know:
 - \circ By subtracting eta from the distribution of \hat{eta}
 - \circ And dividing by the standard deviation of \hat{eta}

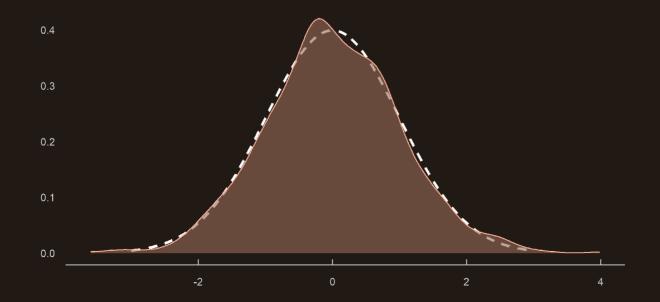
C



$$rac{\hat{eta} - eta}{ ext{SD}(\hat{eta})}$$

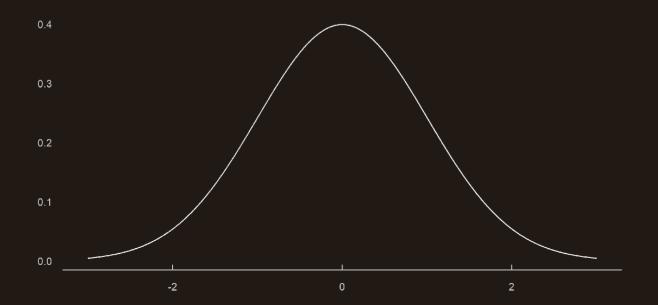
1.2. Standardization

- That is crucial information because it allows to get back to something we know:
 - \circ By subtracting eta from the distribution of \hat{eta}
 - \circ And dividing by the standard deviation of $\hat{\beta}$
 - With an infinite sample we would obtain the standard normal distribution



$$rac{\hat{eta} - eta}{ ext{SD}(\hat{eta})} \sim \mathcal{N}(0, 1)$$

- We can use the fact that we know the standard normal distribution:
 - O
 - C
 - 0



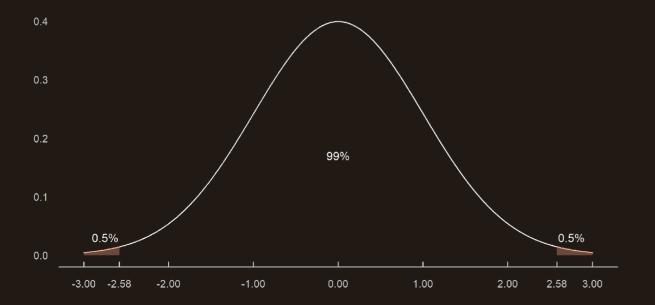
$$rac{\hat{eta} - eta}{ ext{SD}(\hat{eta})} \sim \mathcal{N}(0,1)$$

1.3. Confidence interval

- We can use the fact that we know the standard normal distribution:
 - \circ That 99% of the distribution lie between \pm 2.58

С

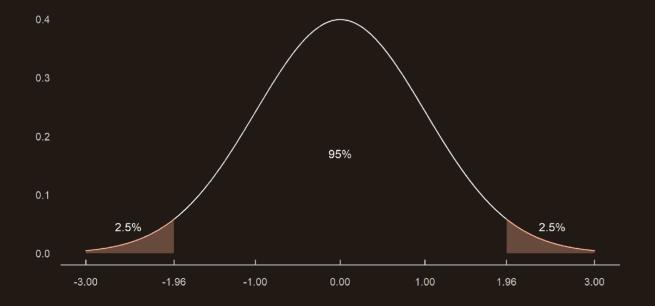
0



$$rac{\hat{eta} - eta}{ ext{SD}(\hat{eta})} \sim \mathcal{N}(0,1)$$

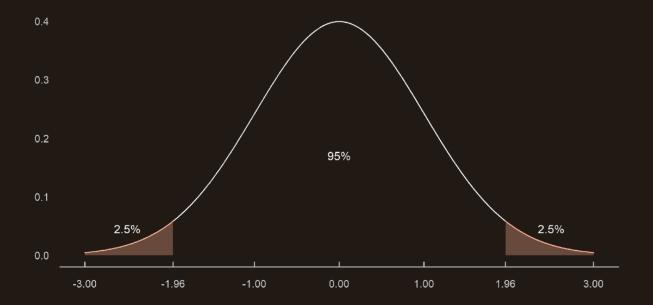
$$ext{Pr}\left[-2.58 < rac{\hat{eta} - eta}{ ext{SD}(\hat{eta})} < 2.58
ight] pprox 99\%$$

- We can use the fact that we know the standard normal distribution:
 - \circ That 99% of the distribution lie between \pm 2.58
 - \circ That 95% of the distribution lie between \pm 1.96



$$rac{\hat{eta}-eta}{\mathrm{SD}(\hat{eta})}\sim\mathcal{N}(0,1)$$
 $\Pr\left[-1.96<rac{\hat{eta}-eta}{\mathrm{SD}(\hat{eta})}<1.96
ight]pprox95\%$

- We can use the fact that we know the standard normal distribution:
 - \circ That 99% of the distribution lie between \pm 2.58
 - \circ That 95% of the distribution lie between \pm 1.96
 - This is what allows to determine confidence intervals



$$rac{\hat{eta}-eta}{\mathrm{SD}(\hat{eta})}\sim\mathcal{N}(0,1)$$
 $\Pr\left[-1.96<rac{\hat{eta}-eta}{\mathrm{SD}(\hat{eta})}<1.96
ight]pprox95\%$

$$ext{Pr}\left[-1.96 < rac{\hat{eta} - eta}{ ext{SD}(\hat{eta})} < 1.96
ight] pprox 95\%$$

$$ext{Pr}\left[-1.96 imes ext{SD}(\hat{eta}) < \hat{eta} - eta < 1.96 imes ext{SD}(\hat{eta})
ight] pprox 95\%$$

$$ext{Pr}\left[-1.96 imes ext{SD}(\hat{eta})-\hat{eta}<-eta<1.96 imes ext{SD}(\hat{eta})-\hat{eta}
ight]pprox95\%$$

$$ext{Pr}\left[+1.96 imes ext{SD}(\hat{eta})+\hat{eta}>eta>-1.96 imes ext{SD}(\hat{eta})+\hat{eta}
ight]pprox95\%$$

$$ext{CI}_{95\%}:\,\hat{eta}\pm 1.96 imes ext{SD}(\hat{eta})$$

Overview

1. Asymptotic inference ✓

- 1.1. Data generating process
- 1.2. Standardization
- 1.3. Confidence interval

2. Exact inference

- 2.1. Standard error
- 2.2. Student-t distribution
- 2.3. Confidence interval

3. Hypothesis testing

- 3.1. P-value
- 3.2. linearHypothesis()

4. Wrap up!

Overview

1. Asymptotic inference ✓

- 1.1. Data generating process
- 1.2. Standardization
- 1.3. Confidence interval

2. Exact inference

- 2.1. Standard error
- 2.2. Student-t distribution
- 2.3. Confidence interval

2.1. Standard error

- In the **previous section** I used phrases like "at the limit" or "with an infinite sample"
 - But **in practice** this is **not the case**, so things behave slightly differently
 - And this implies to make a few **statistical adjustments** to account for that

$$\hat{eta} \pm 1.96 imes ext{SD}(\hat{eta})$$

- First we **cannot measure** directly the **standard deviation** of \hat{eta}
 - \circ Indeed in practice we have **only one observation** of $\hat{\beta}$, not its whole distribution
 - But like for the mean, we can compute a standard error instead

Standard deviation

→ Measures the amount of variability, or dispersion, from the individual data values to the mean

Standard error

→ Measures how far an estimate from a given sample is likely to be from the true parameter of interest

2.1. Standard error

• We won't go through the theoretical computations together, but let's have a look at the formula:

$$ext{se}(\hat{eta}) = \sqrt{\widehat{ ext{Var}(\hat{eta})}} = \sqrt{rac{\sum_{i=1}^n \hat{arepsilon_i}^2}{(n - \# ext{parameters}) \sum_{i=1}^n (x_i - ar{x})^2}}$$

• Notice that the variance, and thus the standard error of our estimate, decreases as:

2.1. Standard error

$$\operatorname{se}(\hat{eta}) = \sqrt{\widehat{\operatorname{Var}(\hat{eta})}} = \sqrt{rac{\sum_{i=1}^n \hat{arepsilon_i}^2}{(n-\# ext{parameters})\sum_{i=1}^n (x_i - ar{x})^2}}$$

- Notice that the variance, and thus the standard error of our estimate, decreases as:
 - The number of observations gets bigger

2.1. Standard error

$$ext{se}(\hat{eta}) = \sqrt{\widehat{ ext{Var}(\hat{eta})}} = \sqrt{rac{\sum_{i=1}^n \hat{arepsilon_i}^2}{(n - \# ext{parameters}) \sum_{i=1}^n (x_i - ar{x})^2}}$$

- Notice that the variance, and thus the standard error of our estimate, decreases as:
 - The number of of observations gets bigger
 - The number of parameters decreases

2.1. Standard error

$$ext{se}(\hat{eta}) = \sqrt{\widehat{ ext{Var}(\hat{eta})}} = \sqrt{rac{\sum_{i=1}^n \widehat{arepsilon}_i^2}{(n - \# ext{parameters}) \sum_{i=1}^n (x_i - ar{x})^2}}$$

- Notice that the variance, and thus the standard error of our estimate, decreases as:
 - The number of of observations gets bigger
 - The number of parameters decreases
 - \circ The sum of squared errors relative to the variance of x decreases

2.1. Standard error

$$ext{se}(\hat{eta}) = \sqrt{\widehat{ ext{Var}(\hat{eta})}} = \sqrt{rac{\sum_{i=1}^n \hat{arepsilon_i}^2}{(n - \# ext{parameters}) \sum_{i=1}^n (x_i - ar{x})^2}}$$

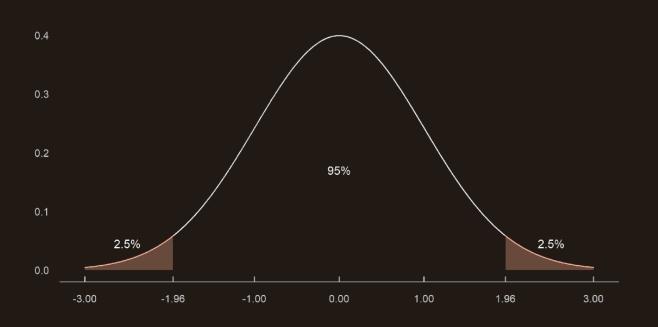
- Notice that the variance, and thus the standard error of our estimate, decreases as:
 - The number of of observations gets bigger
 - The number of parameters decreases
 - \circ The sum of squared errors decreases relative to the variance of x
- And as the standard error gets bigger, the confidence interval gets bigger:

$$\hat{eta} \pm 1.96 imes ext{se}(\hat{eta})$$

2.2. Student-t distribution

But that's not it, remember that we took the value 1.96 from the normal distribution

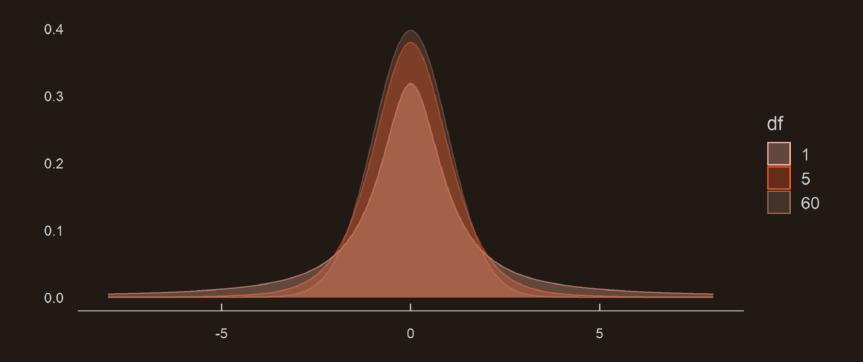
$$\hat{eta} \pm 1.96 imes \mathrm{se}(\hat{eta})$$



- But the **normal distribution** is what $\frac{\hat{\beta} \beta}{\mathrm{SD}(\hat{\beta})}$ converges to **at the limit**
- In the **finite** world, $\frac{\hat{\beta} \beta}{\operatorname{se}(\hat{\beta})}$ follows a slightly flatter distribution
- The **Student** t **distribution**, whose precise shape depends on the number of observations we have and parameters we estimate

2.2. Student-t distribution

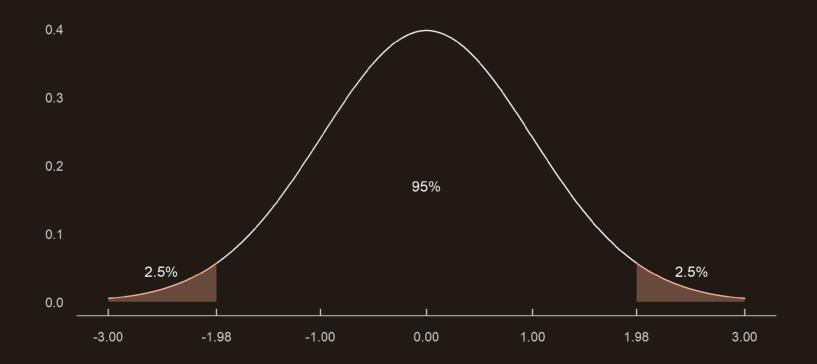
- The Student t distribution accounts for the fact that the sample is finite
 - The lower the number of **degrees of freedom** (#observations #parameters) the flatter
 - $\circ~$ And it **tends to a normal** distribution as the number of degrees of freedom $ightarrow \infty$



2.2. Student-t distribution

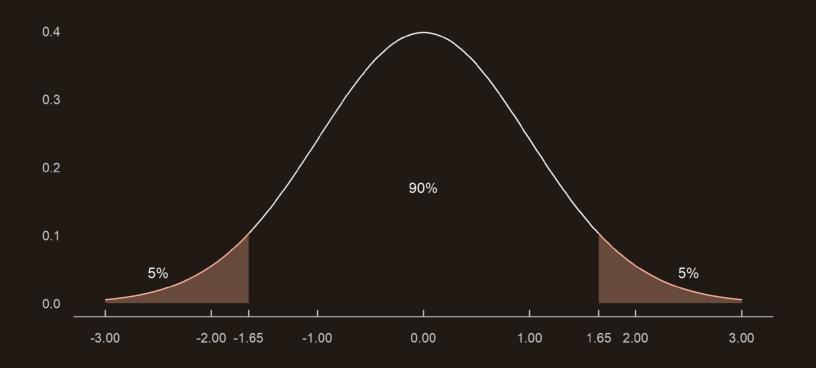
- ullet But **we know the Student** t **distributions** just as well as the standard normal distribution
 - $\circ~$ With 100 degrees of freedom, 95% of the distribution lie between $\pm~$ 1.98

C



2.2. Student-t distribution

- But we know the Student t distributions just as well as the standard normal distribution
 - \circ With 100 degrees of freedom, 95% of the distribution lie between \pm 1.98
 - \circ With 3,000 degrees of freedom, 90% of the distribution lie between \pm 1.65



2.2. Student-t distribution

- So **instead of 1.96**, we must use the **value such that:**
 - \circ The **desired percentage** of the distribution is comprised within \pm that value...
 - \circ For a Student t distribution with the relevant number of **degrees of freedom**
- We can get these values easily with the **qt()** function, indicating:
 - 0
 - 0

```
qt( , )
```


2.2. Student-t distribution

- So **instead of 1.96**, we must use the **value such that:**
 - \circ The **desired percentage** of the distribution is comprised within \pm that value...
 - \circ For a Student t distribution with the relevant number of **degrees of freedom**
- We can get these values easily with the **qt()** function, indicating:
 - The share of the distribution below the value we're looking for (e.g., 0.975 for a 95% CI)

0

```
qt(.975, )
```


2.2. Student-t distribution

- So **instead of 1.96**, we must use the **value such that:**
 - \circ The **desired percentage** of the distribution is comprised within \pm that value...
 - \circ For a Student t distribution with the relevant number of **degrees of freedom**
- We can get these values easily with the **qt()** function, indicating:
 - The share of the distribution below the value we're looking for (e.g., 0.975 for a 95% CI)
 - \circ The number of degrees of freedom of the Student t distribution (e.g., 88 observations 2 parameters)

```
qt(.975, 86)
```

```
## [1] 1.987934
```

- Denote this value $t(\mathrm{df})_{1-rac{lpha}{2}}$
 - \circ With lpha equal to 1- the confidence level
 - And df the number of degrees of freedom

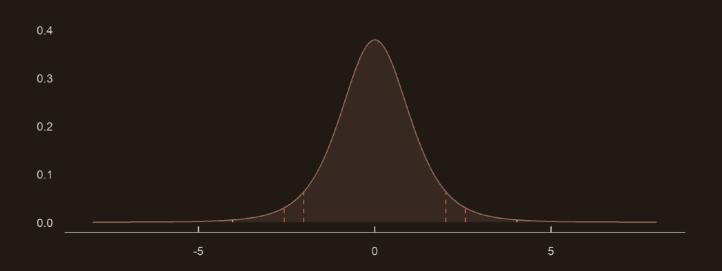
2.3. Confidence interval

• The formula for the confidence interval in finite sample hence writes:

$$\hat{eta} \pm t(\mathrm{df})_{1-rac{lpha}{2}} imes \mathrm{se}(\hat{eta})$$

- The confidence interval increases as:
 - The confidence level increases

C

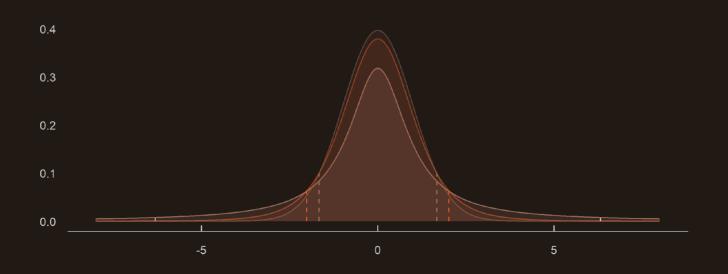


2.3. Confidence interval

• The formula for the confidence interval in finite sample hence writes:

$$\hat{eta} \pm t(ext{df})_{1-rac{lpha}{2}} imes ext{se}(\hat{eta})$$

- The confidence interval increases as:
 - The confidence level increases
 - The number of degrees of freedom decreases



- 1) Import the ggcurve.csv dataset
- 2) Regress the IGE on the Gini coefficient and store the estimated regression parameters
- 3) Compute the 95% confidence interval of the regression slope

$$\hat{eta} \pm t(ext{df})_{1-rac{lpha}{2}} imes ext{se}(\hat{eta})$$

$$ext{se}(\hat{eta}) = \sqrt{rac{\sum_{i=1}^n \hat{arepsilon_i}^2}{(n-\# ext{parameters})\sum_{i=1}^n (x_i-ar{x})^2}}$$

You've got 10 minutes!

Solution

1) Import the ggcurve.csv dataset

```
ggcurve <- read.csv("C:/User/Documents/ggcurve.csv")</pre>
```

2) Regress the IGE on the Gini coefficient and store the regression slope

```
model <- lm(ige ~ gini, ggcurve)
model

##
## Call:
## lm(formula = ige ~ gini, data = ggcurve)
##
## Coefficients:
## (Intercept) gini
## -0.09129 1.01546</pre>
```

```
alpha <- model$coefficients[1]
beta <- model$coefficients[2]</pre>
```

Solution

3) Compute the 95% confidence interval of the regression slope

```
se_dat <- ggcurve %>%
  mutate(fit = alpha + gini * beta, e = ige - fit) %>%
  summarise(se = sqrt(sum(e^2)/((n()-2)*sum((gini-mean(gini))^2))))
se_dat$se
## [1] 0.2642477
beta - se_dat$se * qt(.975, nrow(ggcurve) - 2)
   gini
##
## 0.4642511
beta + se_dat$se * qt(.975, nrow(ggcurve) - 2)
   gini
##
## 1.566673
```

Overview

1. Asymptotic inference ✓

- 1.1. Data generating process
- 1.2. Standardization
- 1.3. Confidence interval

2. Exact inference ✓

- 2.1. Standard error
- 2.2. Student-t distribution
- 2.3. Confidence interval

3. Hypothesis testing

- 3.1. P-value
- 3.2. linearHypothesis()

4. Wrap up!

Overview

1. Asymptotic inference ✓

- 1.1. Data generating process
- 1.2. Standardization
- 1.3. Confidence interval

2. Exact inference ✓

- 2.1. Standard error
- 2.2. Student-t distribution
- 2.3. Confidence interval

3. Hypothesis testing

- 3.1. P-value
- 3.2. linearHypothesis()

- We now have the **95% confidence interval** for our estimate:
 - \circ Our estimate of β is 1.02
 - \circ And we are 95% sure that β lies between 0.46 and 1.57

- Note that in our **confidence interval** formula:
 - \circ The **standard error** and the relevant Student t **distribution** are **given**
 - \circ But the **confidence level** $1-\alpha$ was **chosen arbitrarily**
- → Setting a **higher confidence** level would **widen the confidence interval**
- → Allowing for a **lower confidence** level would **narrow the confidence interval**

3.1. P-value

• So far we framed the problem as:

"What are the values β is likely to take under a given confidence level?"

• But we could also think of it as:

"Under which confidence level is β is likely to take a given value?"

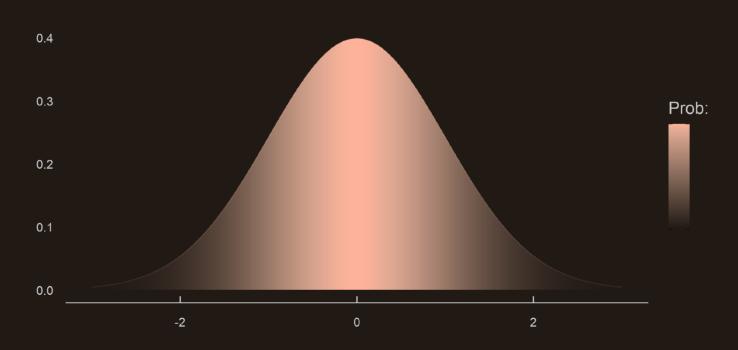
- And this is actually a very **practical way of framing the question:**
 - To (in)validate the predictions from a theoretical model
 - \circ To know under which confidence level eta is likely to be eq 0 at all

→ But how to answer such questions in practice?

3.1. P-value

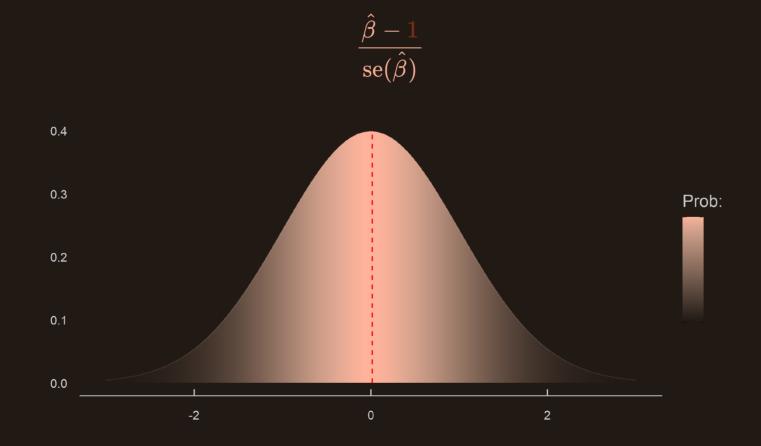
• We can start from the fact that even though we do not know β , we know that:

$$rac{\hat{eta} - eta}{ ext{se}(\hat{eta})} \sim t(ext{df})$$



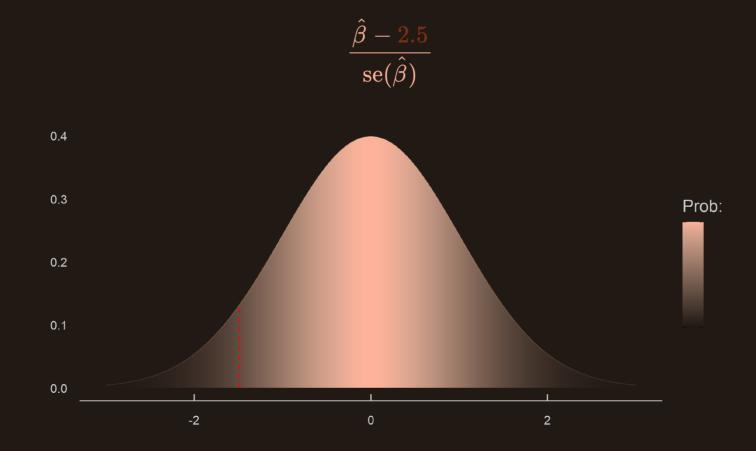
3.1. P-value

• And that in this distribution some values are quite plausible:



3.1. P-value

• And some are way less plausible:

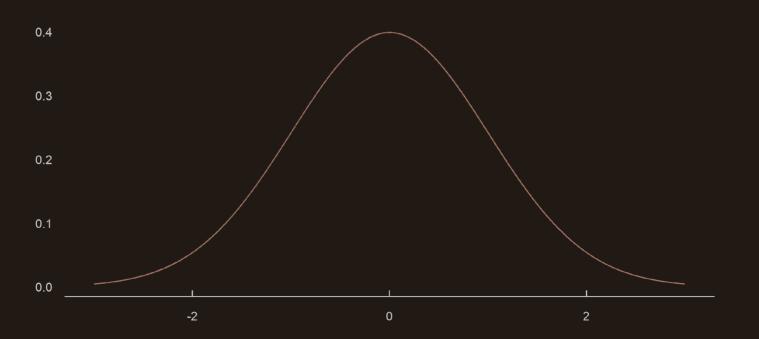


3.1. P-value

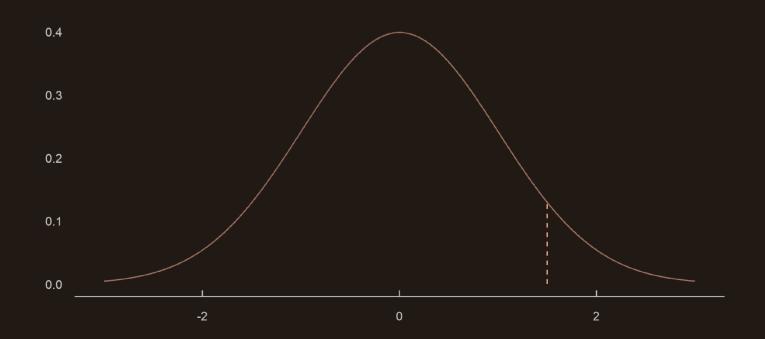
• But because the distribution is **continuous:**

(

0



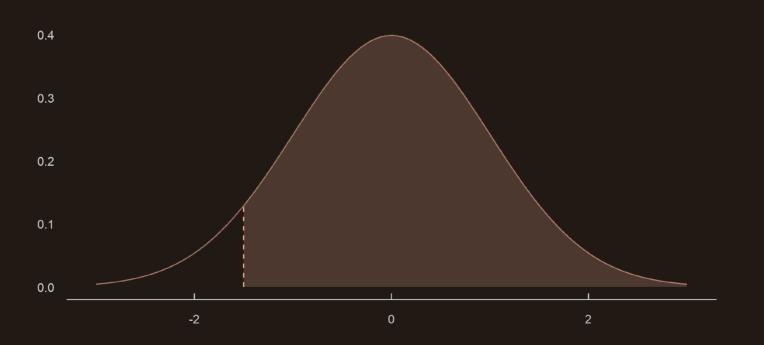
- But because the distribution is **continuous:**
 - The **probability** to draw any **exact value** would be **0**



- But because the distribution is **continuous:**
 - The **probability** to draw any **exact value** would be **0**
 - We can only compute the **probability to fall below** that value



- But because the distribution is **continuous**:
 - The **probability** to draw any **exact value** would be **0**
 - **Or to fall above** that value **if** it is **negative**

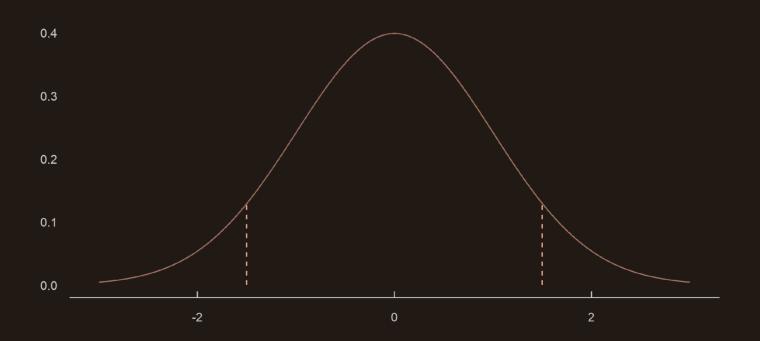


3.1. P-value

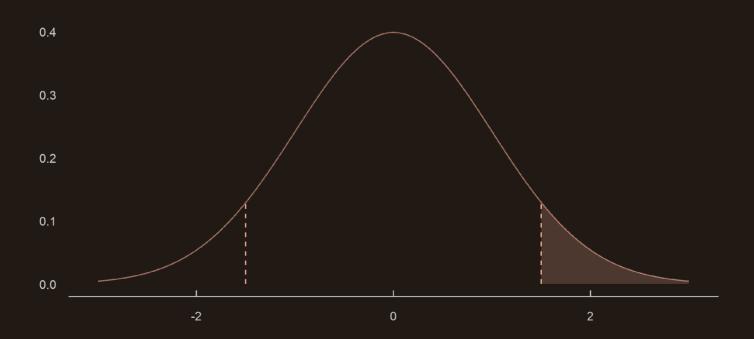
• But **generally** what makes sense is to know what are the **chances to fall** *that far* **from 0**:

0

0



- But **generally** what makes sense is to know what are the **chances to fall** *that far* **from 0**:
 - So we take 1 the probability to fall below the absolute value



- But **generally** what makes sense is to know what are the **chances to fall** *that far* **from 0**:
 - So we take 1 the probability to fall below the absolute value
 - And we multiply it by 2

3.1. P-value

- The **resulting area** is what we call a **p-value**
 - \circ It is the probability that eta falls at least as far from \hat{eta} as the hypothesized value
- ullet Consider finding $\hat{eta}=4$ and a hypothesizing value of 3 for eta
 - $\circ~$ A p-value of 5% indicates that there is only a 5% chance to find a $\hat{eta}=4$ if eta=3
 - \circ Below that threshold we would reject the hypothesis that eta=3 at the 95% confidence level
- Notice that in this example, the 95% confidence interval of \hat{eta} would not include the value 3
 - With a hypothesized value equal to the bound of a confidence interval the p-value would equal 1 the corresponding confidence level
 - $\circ~$ So a p-value lower than lpha means that the hypothesized value is outside the (1-lpha)% confidence interval

→ Let's go through a formal example with our data

3.1. P-value

ullet Can we **reject** at the 95% confidence level that eta=0?

beta

```
## gini
## 1.015462
```

- ullet We should start by hypothesizing that eta=0
 - \circ This is what we call the "null hypothesis" H_0

$$H_0:eta=0$$

Under H_0 :

$$rac{\hat{eta} - 0}{\mathrm{se}(\hat{eta})} \sim t(\mathrm{df})$$

3.1. P-value

• We should find the **area below** $(\hat{\beta}-0)/\mathrm{se}(\hat{\beta})$ in a Student t distribution we the right number of df $\circ \ (\hat{\beta}-0)/\mathrm{se}(\hat{\beta})$ is what we call **the** t-**stat**

```
(beta - 0) / se_dat$se

## gini

## 3.842842
```

• While **qt()** gave us the **value** for a certain probability, **pt()** gives the the **probability** for a given value:

0

0

```
pt( , )
```


3.1. P-value

• We should find the **area below** $(\hat{\beta}-0)/\mathrm{se}(\hat{\beta})$ in a Student t distribution we the right number of df $\circ \ (\hat{\beta}-0)/\mathrm{se}(\hat{\beta})$ is what we call **the** t-**stat**

```
(beta - 0) / se_dat$se

## gini

## 3.842842
```

- While **qt()** gave us the **value** for a certain probability, **pt()** gives the the **probability** for a given value:
 - Put in the **t-stat**

0

```
pt((beta - 0) / se_dat$se, )
```


3.1. P-value

3.842842

0.9994921

• We should find the **area below** $(\hat{\beta}-0)/\mathrm{se}(\hat{\beta})$ in a Student t distribution we the right number of df $\circ \ (\hat{\beta}-0)/\mathrm{se}(\hat{\beta})$ is what we call **the** t-**stat**

```
(beta - 0) / se_dat$se
## gini
```

- While **qt()** gave us the **value** for a certain probability, **pt()** gives the the **probability** for a given value:
 - Put in the **t-stat**
 - And the degrees of freedom

```
pt((beta - 0) / se_dat$se, nrow(ggcurve) - 2)
## gini
```



```
    We must then:

            Take 1 - this probability (area above the t-stat)
            pt(abs((beta - 0) / se_dat$se), nrow(ggcurve) - 2)
```

```
## gini
## 0.0005078528
```


3.1. P-value

• We must then:

0.001015706

- Take **1 this probability** (area above the t-stat)
- And **multiply it by 2** (consider the absolute distance and not the signed distance)

```
2 * (1 - pt(abs((beta - 0) / se_dat$se), nrow(ggcurve) - 2))
## gini
```

- The **p-value** is **lower than 1%**:
 - \circ We can **reject at the 99% confidence level** that eta=0
 - \circ In that case we say that $\hat{\beta}$ is **significantly different from 0** at the 1% significance level
- But the **p-value** is **greater than 0.1%**:
 - $\circ~$ We cannot reject at the 99.9% confidence level that eta=0
 - \circ In that case we say that $\hat{\beta}$ is **not significantly different from 0** at the 0.1% significance level

3.1. P-value

• By default, the **summary()** function **tests** whether or not each coefficient is significantly **different from 0**

```
summary(lm(ige ~ gini, ggcurve))
```


- By default, the **summary()** function **tests** whether or not each coefficient is significantly **different from 0**
 - You can **extract** the information from the **\$coefficient** attribute of the output

```
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.09129311 0.1287045 -0.7093234 0.486311455
## gini 1.01546204 0.2642477 3.8428420 0.001015706
```

- For each coefficient it indicates:
 - The standard error
 - \circ The t-stat $(H_0: \beta=0)$
 - \circ The p-value $(H_0:eta=0)$
- The output of the **summary()** function is great to have a **quick overview** of the model:

```
summary(lm(ige ~ gini, ggcurve))
```



```
##
## Call:
## lm(formula = ige ~ gini, data = ggcurve)
##
## Residuals:
##
        Min
                 10 Median
                                     30
                                             Max
## -0.188991 -0.088238 -0.000855 0.047284 0.252310
##
## Coefficients:
##
             Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.09129
                        0.12870 -0.709 0.48631
## gini 1.01546
                        0.26425 3.843 0.00102 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1159 on 20 degrees of freedom
## Multiple R-squared: 0.4247, Adjusted R-squared: 0.396
## F-statistic: 14.77 on 1 and 20 DF, p-value: 0.001016
```



```
##
## Call:
                                                                ← Command
## lm(formula = ige ~ gini, data = ggcurve)
##
## Residuals:
##
        Min 10 Median
                                    30
                                             Max
## -0.188991 -0.088238 -0.000855 0.047284 0.252310
##
## Coefficients:
##
             Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.09129
                        0.12870 -0.709 0.48631
## gini 1.01546
                        0.26425 3.843 0.00102 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1159 on 20 degrees of freedom
## Multiple R-squared: 0.4247, Adjusted R-squared: 0.396
## F-statistic: 14.77 on 1 and 20 DF, p-value: 0.001016
```


3.1. P-value

```
##
## Call:
## lm(formula = ige ~ gini, data = ggcurve)
##
## Residuals:
##
        Min 10 Median
                                    30
                                             Max
## -0.188991 -0.088238 -0.000855 0.047284 0.252310
##
## Coefficients:
##
             Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.09129
                        0.12870 -0.709 0.48631
## gini 1.01546
                        0.26425 3.843 0.00102 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1159 on 20 degrees of freedom
## Multiple R-squared: 0.4247, Adjusted R-squared: 0.396
## F-statistic: 14.77 on 1 and 20 DF, p-value: 0.001016
```

← Command

← Residuals distribution


```
##
## Call:
                                                                  ← Command
## lm(formula = ige ~ gini, data = ggcurve)
##
## Residuals:
##
        Min 10 Median
                                     30
                                              Max
                                                                  ← Residuals distribution
## -0.188991 -0.088238 -0.000855 0.047284 0.252310
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
                                                                  ← Coefs, s.e., t-/p-values
## (Intercept) -0.09129
                        0.12870 -0.709 0.48631
## gini 1.01546
                         0.26425 3.843 0.00102 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1159 on 20 degrees of freedom
## Multiple R-squared: 0.4247, Adjusted R-squared: 0.396
## F-statistic: 14.77 on 1 and 20 DF, p-value: 0.001016
```



```
##
## Call:
                                                          ← Command
## lm(formula = ige ~ gini, data = ggcurve)
##
## Residuals:
##
       Min 10 Median
                                30
                                        Max
                                                          ← Residuals distribution
## -0.188991 -0.088238 -0.000855 0.047284 0.252310
##
## Coefficients:
##
            Estimate Std. Error t value Pr(>|t|)
                                                          ← Coefs, s.e., t-/p-values
## (Intercept) -0.09129
                     0.12870 -0.709 0.48631
## gini 1.01546
                      0.26425 3.843 0.00102 **
## ---
##
## Residual standard error: 0.1159 on 20 degrees of freedom
## Multiple R-squared: 0.4247, Adjusted R-squared: 0.396
## F-statistic: 14.77 on 1 and 20 DF, p-value: 0.001016
```



```
##
## Call:
                                                           ← Command
## lm(formula = ige ~ gini, data = ggcurve)
##
## Residuals:
##
       Min 10 Median
                                 30
                                         Max
                                                          ← Residuals distribution
## -0.188991 -0.088238 -0.000855 0.047284 0.252310
##
## Coefficients:
##
            Estimate Std. Error t value Pr(>|t|)
                                                           ← Coefs, s.e., t-/p-values
## (Intercept) -0.09129
                      0.12870 -0.709 0.48631
## gini 1.01546
                      0.26425 3.843 0.00102 **
## ---
##
## Residual standard error: 0.1159 on 20 degrees of freedom
                                                           ← df and advanced stats
## Multiple R-squared: 0.4247, Adjusted R-squared: 0.396
## F-statistic: 14.77 on 1 and 20 DF, p-value: 0.001016
```


3.2. linearHypothesis()

• But the linearHypothesis() function from the car package allows to easily test other hypotheses:

0

C

linearHypothesis(,)

3.2. linearHypothesis()

• But the **linearHypothesis()** function from the **car** package allows to **easily test** other **hypotheses:**

 \circ You must provide the **model**

(

```
linearHypothesis(lm(ige ~ gini, ggcurve), )
```


3.2. linearHypothesis()

- But the linearHypothesis() function from the car package allows to easily test other hypotheses:
 - You must provide the model
 - And the hypothesis (referring to coefficients as in the summary)

```
linearHypothesis(lm(ige ~ gini, ggcurve), "gini = 0")
```

```
## Linear hypothesis test
##
## Hypothesis:
## gini = 0
##
## Model 1: restricted model
## Model 2: ige ~ gini
##
##
    Res.Df
           RSS Df Sum of Sq F
                                        Pr(>F)
## 1
        21 0.46733
        20 0.26883 1 0.1985 14.767 0.001016 **
## 2
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
```


3.2. linearHypothesis()

- You can also test more complex hypotheses
 - Like equality between coefficients

```
linearHypothesis(lm(ige ~ gini, ggcurve), "gini = (Intercept)")
## Linear hypothesis test
##
## Hypothesis:
## - (Intercept) + gini = 0
##
## Model 1: restricted model
## Model 2: ige ~ gini
##
    Res.Df RSS Df Sum of Sq F Pr(>F)
##
        21 0.37634
## 1
        20 0.26883 1 0.10751 7.9983 0.01039 *
## 2
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```


3.2. linearHypothesis()

- You can also test more complex hypotheses
 - Like equality between coefficients, or joint hypotheses (relying a generalization of the t-test called *F-test*)

```
linearHypothesis(lm(ige ~ gini, ggcurve), c("gini = 0", "(Intercept) = 0"))
## Linear hypothesis test
##
## Hypothesis:
## gini = 0
  (Intercept) = 0
##
## Model 1: restricted model
## Model 2: ige ~ gini
##
              RSS Df Sum of Sq F Pr(>F)
##
    Res.Df
## 1
        22 3.8841
## 2
        20 0.2688 2 3.6153 134.48 2.523e-12 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
```

Overview

1. Asymptotic inference ✓

- 1.1. Data generating process
- 1.2. Standardization
- 1.3. Confidence interval

2. Exact inference ✓

- 2.1. Standard error
- 2.2. Student-t distribution
- 2.3. Confidence interval

3. Hypothesis testing ✓

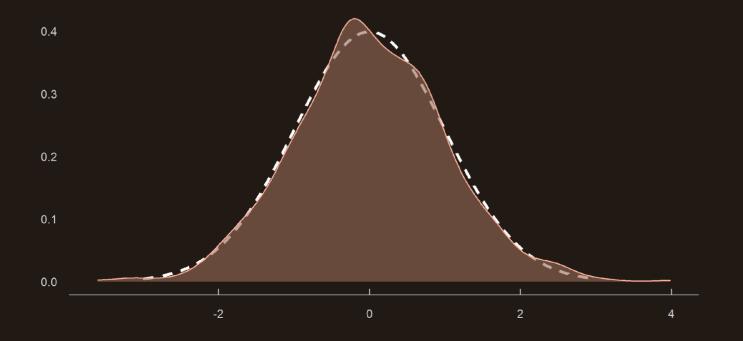
- 3.1. P-value
- 3.2. linearHypothesis()

4. Wrap up!

4. Wrap up!

Data generating process

- In practice we estimate coefficients on a **given realization of a data generating process**
 - So the **true coefficient** is **unobserved**
 - But our **estimation** is **informative** on the values the true coefficient is likely to take



$$rac{\hat{eta} - eta}{ ext{SD}(\hat{eta})} \sim \mathcal{N}(0,1)$$

4. Wrap up!

Confidence interval

• This allows to infer a **confidence interval**:

$$\hat{eta} \pm t(ext{df})_{1-rac{lpha}{2}} imes ext{se}(\hat{eta})$$

- Where $t(\mathrm{df})_{1-rac{lpha}{2}}$ is the value from a **Student** t **distribution**
 - \circ With the relevant number of **degrees of freedom** df (n #parameters)
 - \circ And the desired **confidence level** 1-lpha
- And where $\operatorname{se}(\hat{\beta})$ denotes the **standard error** of $\hat{\beta}$:

$$ext{se}(\hat{eta}) = \sqrt{\widehat{ ext{Var}(\hat{eta})}} = \sqrt{rac{\sum_{i=1}^n \hat{arepsilon_i}^2}{(n - \# ext{parameters}) \sum_{i=1}^n (x_i - ar{x})^2}}$$

4. Wrap up!

P-value

- It also allows to **test** how likely is β to be **different from a given value:**
 - \circ If the **p-value** < 5%, we can **reject** that β equals the **hypothesized value** at the 95% confidence level
 - This threshold, very common in Economics, implies that we have 1 chance out of 20 to be wrong

```
linearHypothesis(lm(ige ~ gini, ggcurve), "gini = 0")
  Linear hypothesis test
##
## Hypothesis:
## gini = 0
##
## Model 1: restricted model
## Model 2: ige ~ gini
##
##
    Res.Df
             RSS Df Sum of Sq F
                                        Pr(>F)
## 1
        21 0.46733
        20 0.26883 1 0.1985 14.767 0.001016 **
## 2
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
```