class: center, middle, inverse, title-slide # Applications in academic research ## Lecture 13 ###
Louis SIRUGUE ### CPES 2 - Fall 2022 --- <style> .left-column {width: 65%;} .right-column {width: 35%;} </style> ### Quick reminder #### Standard interpretations <ul> <li>When both \(x\) and \(y\) are continuous, the <b>general</b> template for the <b>interpretation</b> of \(\hat{\beta}\) is:</li> </ul> <center><i>"Everything else equal, a 1 [unit] increase in [x] is associated with<br> an [in/de]crease of [beta] [units] in [y] on average."</i></center> -- <p style = "margin-bottom:1.5cm;"></p> <ul> <li>With a discrete \(x\), the interpretation of the coefficient must be <b>relative to the reference category:</b></li> </ul> <center><i>"Everything else equal, belonging to the [x category] is associated with<br> a [beta] [unit] [higher/lower] average [y] relative to the [reference category]."</i></center> -- <p style = "margin-bottom:1.5cm;"></p> <ul> <li>With a <b>binary \(y\) variable</b>, the coefficient must be interpreted in <b>percentage points:</b></li> </ul> <center><i>"Everything else equal, a 1 [unit] increase in [x] is associated with<br> a [beta \(\times\) 100] percentage point [in/de]crease in the probability that [y equals 1] on average."</i></center> --- ### Quick reminder #### Interpretations with variable transformation <p style = "margin-bottom:1.25cm;"></p> .pull-left[ <center><b>Standardization</b></center> <ul> <li>To standardize a variable is to <b>divide it by its SD</b></li> <ul> <li>The variation of a standardized variable should not be <b>interpreted</b> in units but <b>in SD</b></li> <li>For instance if \(x\) and \(y\) are continuous and \(x\) is standardized, the interpretation becomes:</li> </ul> </ul> <p style = "margin-bottom:1cm;"></p> <center><i>"Everything else equal, a 1 <b>standard deviation</b> increase in [x] is associated with an [in/de]crease of [beta] [units] in [y] on average."</i></center> <p style = "margin-bottom:1cm;"></p> <ul> <li>If both \(x\) and \(y\) are standardized, the slope is the correlation coefficient between \(x\) and \(y\)</li> </ul> ] -- .pull-right[ <center><b>Log-transformation</b></center> <ul> <li>The log transformation allows to interpret the coefficient in percentage terms:</li> </ul> <p style = "margin-bottom:1.25cm;"></p> <table class="table table-hover table-condensed" style="width: auto !important; margin-left: auto; margin-right: auto;font-size: 20px;"> <caption>Interpretation of the regression coefficient</caption> <thead> <tr style = "background-color: #CCD5D9;"> <th style="text-align:center;"> </th> <th style="text-align:center;"> y </th> <th style="text-align:center;"> log(y) </th> </tr> </thead> <tbody> <tr> <td style="text-align:center;font-weight: bold;"> x </td> <td style="text-align:center;width: 10em; "> \(\hat{\beta}\) is the unit increase in \(y\) due to a 1 unit increase in \(x\) </td> <td style="text-align:center;width: 10em; "> \(\hat{\beta}\times 100\) is the % increase in \(y\) due to a 1 unit increase in \(x\) </td> </tr> <tr style = "background-color: #CCD5D9;"> <td style="text-align:center;font-weight: bold;"> log(x) </td> <td style="text-align:center;width: 10em;"> \(\hat{\beta}\div 100\) is the unit increase in \(y\) due to a 1% increase in \(x\) </td> <td style="text-align:center;width: 10em;"> \(\hat{\beta}\) is the % increase in \(y\) due to a 1% increase in \(x\) </td> </tr> </tbody> </table> ] --- ### Quick reminder #### Regression table layout <style type="text/css"> .remark-slide table{ font-size: 15px; margin: auto; border-top: 0px; border-bottom: 0px; } tr th td{ font-size: 15px; margin: auto; border-top: 0px; border-bottom: 0px; } .remark-slide thead, .remark-slide tfoot, .remark-slide tr:nth-child(even) { background: var(--background-color); } </style> .pull-left[ <table style="text-align:center"><tr><td colspan="3" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left"></td><td colspan="2">Birth weight</td></tr> <tr><td style="text-align:left"></td><td>(1)</td><td>(2)</td></tr> <tr><td colspan="3" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left">Household income</td><td>0.002<sup>***</sup></td><td>0.002<sup>***</sup></td></tr> <tr><td style="text-align:left"></td><td>(0.0003)</td><td>(0.0003)</td></tr> <tr><td style="text-align:left"></td><td></td><td></td></tr> <tr><td style="text-align:left">Girl (ref: Boy)</td><td></td><td>-141.943<sup>***</sup></td></tr> <tr><td style="text-align:left"></td><td></td><td>(34.878)</td></tr> <tr><td style="text-align:left"></td><td></td><td></td></tr> <tr><td style="text-align:left">Constant</td><td>3,127.146<sup>***</sup></td><td>3,247.126<sup>***</sup></td></tr> <tr><td style="text-align:left"></td><td>(16.188)</td><td>(33.520)</td></tr> <tr><td style="text-align:left"></td><td></td><td></td></tr> <tr><td colspan="3" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left">Observations</td><td>1,000</td><td>963</td></tr> <tr><td style="text-align:left">R<sup>2</sup></td><td>0.047</td><td>0.063</td></tr> <tr><td colspan="3" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left"><em>Note:</em></td><td colspan="2" style="text-align:right"><sup>*</sup>p<0.1; <sup>**</sup>p<0.05; <sup>***</sup>p<0.01</td></tr> </table> ] .pull-right[ Regression tables often contain multiple regressions: <p style = "margin-bottom:.8cm;"></p> <ul> <li>With <b>one regression in each column</b></li> </ul> <p style = "margin-bottom:.8cm;"></p> <ul> <li>And one variable in <b>each row</b></li> <ul> <li>With the <b>point estimate</b></li> <li>And a <b>precision measure</b> below</li> </ul> </ul> <p style = "margin-bottom:.8cm;"></p> <ul> <li><b>General info</b> on each model <b>at the bottom</b></li> <ul> <li>Number of observations</li> <li>\(\text{R}^2 = 1 - \frac{\sum_{i = 1}^n\hat{\varepsilon_i}^2}{\sum_{i = 1}^n(y_i-\bar{y})^2}\)</li> </ul> </ul> <p style = "margin-bottom:.8cm;"></p> <ul> <li>A <b>symbology</b> for the <b>p-value</b> testing whether the coefficient is significantly different from 0 or not</li> </ul> ] --- <h3>Today: Applications in academic research</h3> -- <p style = "margin-bottom:3cm;"></p> .pull-left[ <ul style = "margin-left:-.5cm;list-style: none"> <li><b>1. Causal approach (Behaghel et al., 2015)</b></li> <ul style = "list-style: none"> <li>1.1. Structure</li> <li>1.2. Data</li> <li>1.3. Analysis</li> </ul> </ul> <p style = "margin-bottom:1cm;"></p> <ul style = "margin-left:-.5cm;list-style: none"> <li><b>2. Correlational approach (Chetty et al., 2014)</b></li> <ul style = "list-style: none"> <li>2.1. Empirical approach</li> <li>2.2. National results</li> <li>2.3. Spatial variations</li> <li>2.4. Correlational analysis</li> </ul> </ul> ] .pull-right[ <ul style = "margin-left:-1cm;list-style: none"> <li><b>3. Structural approach (Nerlove, 1963)</b></li> <ul style = "list-style: none"> <li>3.1. Motivation</li> <li>3.2. Theoretical modeling</li> <li>3.3. Regression expression</li> </ul> </ul> <p style = "margin-bottom:1cm;"></p> <ul style = "margin-left:-1cm;list-style: none"><li><b>4. Wrap up!</b></li></ul> ] --- <h3>Today: Applications in academic research</h3> <p style = "margin-bottom:3cm;"></p> .pull-left[ <ul style = "margin-left:-.5cm;list-style: none"> <li><b>1. Causal approach (Behaghel et al., 2015)</b></li> <ul style = "list-style: none"> <li>1.1. Structure</li> <li>1.2. Data</li> <li>1.3. Analysis</li> </ul> </ul> ] --- ### 1. Causal approach (Behaghel et al., 2015) #### 1.1. Structure * Research papers always start with an <b>abstract</b> that briefly <b>describes the study:</b> -- <p style = "margin-bottom:.75cm;"></p> <center><img src = "behaghel_abstract.png" width = "650"/></center> --- ### 1. Causal approach (Behaghel et al., 2015) #### 1.1. Structure <p style = "margin-bottom:-.5em;"></p> .pull-left[ <b>Typical structure</b> of an empirical research paper: <p style = "margin-bottom:2em;"></p> <ul> <li>Introduction/literature</li> <p style = "margin-bottom:.5cm;"></p> <li>Data/Descriptive statistics</li> <p style = "margin-bottom:.5cm;"></p> <li>Empirical framework</li> <p style = "margin-bottom:.5cm;"></p> <li>Results</li> <p style = "margin-bottom:.5cm;"></p> <li>(Heterogeneity)</li> <p style = "margin-bottom:.5cm;"></p> <li>Robustness checks</li> <p style = "margin-bottom:.5cm;"></p> <li>Conclusion</li> </ul> ] -- .pull-right[ <b>Structure of Behaghel et al. (2015)</b> is this one: <ul> <li>Introduction</li> <li>Institutional Background</li> <li>Experiment and Data Collection</li> <ul> <li>Program and Experimental Design</li> <li>Data Collection</li> </ul> <li>Impact of Anonymous Résumés</li> <ul> <li>Interview Rates</li> <li>Hiring Rates</li> <li>Recruitment Success</li> <li>Robustness Checks</li> </ul> <li>Mechanisms</li> <ul> <li>Firms’ Participation Decision</li> <li>Résumé Valuation by Participating Firms</li> </ul> <li>Conclusion</li> </ul> ] --- ### 1. Causal approach (Behaghel et al., 2015) #### 1.1. Structure <p style = "margin-bottom:2em;"></p> <center><h4>Program and Experimental Design</h4></center> <p style = "margin-bottom:2em;"></p> <ol> <li><b>Firm entry in the program:</b> Firms with more than 50 employees posting vacancies lasting at least three months at the public employment service (PES) were offered to enter the program, which consists in having a 50% chance to receive anonymized instead of standard resumes for that vacancy.</li> <p style = "margin-bottom:.5cm;"></p> <li><b>Matching of resumes with vacancies:</b> The PES posts the vacancy on a variety of media, including a public website asking interested job seekers to apply through the PES branch. The PES agent selects resumes from these applicants and from internal databases of job seekers.</li> <p style = "margin-bottom:.5cm;"></p> <li><b>Randomization and anonymization:</b> Resumes are randomly anonymized or not with a 50% probability and sent to the employer.</li> <p style = "margin-bottom:.5cm;"></p> <li><b>Selection of resumes by the employer:</b> The employer selects the resumes of applicants she would like to interview and contact them (through the PES if resumes are anonymized).</li> </ol> --- ### 1. Causal approach (Behaghel et al., 2015) #### 1.2. Data <p style = "margin-bottom:2em;"></p> <center><h4>Data sources</h4></center> <p style = "margin-bottom:2em;"></p> <ol> <li><b>Administrative data</b></li> <ul> <li><b>Coverage:</b> All firms and all job seekers who used the public employment services in the experimental areas during (and after) the program</li> <li><b>Content:</b> information on the firm (size, sector), on the job position offered (occupation level, type of contract) and limited information on candidates (unless the candidate is filed as unemployed)</li> </ul> <p style = "margin-bottom:.5cm;"></p> <li><b>Telephone interviews:</b></li> <ul> <li><b>Coverage:</b> All firms entering the program, a subsample of firms that declined to participate, subsamples of applicants to vacancies posted by these two groups of firms both during and after the experiment</li> <li><b>Content:</b> additional characteristics of the vacancy and of the recruiter (characteristics that could be associated with a differential treatment of candidates), questions on the result of the recruitment (time to hiring and match quality)</li> </ul> </ol> --- ### 1. Causal approach (Behaghel et al., 2015) #### 1.2. Data <p style = "margin-bottom:2em;"></p> <center><b>Sample description</b></center> <p style = "margin-bottom:1em;"></p> .left-column[ <ul> <li><b>1,005 firms entered the program (608 declined):</b></li> <ul> <li>385 firms in the control group</li> <li>366 firms in the treatment group</li> <li>254 firms not allocated because canceled or job filled too early</li> </ul> <p style = "margin-bottom:.5cm;"></p> <li><b>Sample of 1,268 applicants:</b></li> <ul> <li>660 to vacancies from the control group</li> <li>608 to vacancies from the treatment group</li> <li>203 to vacancies from firms that withdrew before randomization</li> </ul> <p style = "margin-bottom:.5cm;"></p> <li><b>Main variables:</b></li> <ul> <li>Whether the candidates is from the minority or the majority</li> <li>Whether the resume was anonymized</li> <li>Whether the employer called back for an interview</li> </ul> </ul> ] .right-column[ <p style = "margin-bottom:2.5em;"></p> <ul> <li><b>Authors use sampling weights:</b></li> <ul> <li>Representativity of the sample</li> <li>Non-response bias correction</li> <li>The weight associated with an individual can be viewed as the number of individuals she represents</li> </ul> </ul> ] --- ### 1. Causal approach (Behaghel et al., 2015) #### 1.2. Data * Import the data ```r library(haven) data_rct <- read_dta("data_candidates_mainsample.dta") View(data_rct) ``` <p style = "margin-bottom:1.5em;"></p> -- <center><img src = "data_rct.png" width = "1100"/></center> --- ### 1. Causal approach (Behaghel et al., 2015) #### 1.2. Data * Subset the data ```r data_rct <- data_rct %>% filter(!is.na(CVA)) %>% # Keep participating firms select(treatment = CVA, # Select and rename variables minority = ZouI, # of interest interview = ENTRETIEN, weight = POIDS_SEL) head(data_rct, 5) ``` -- .pull-left[ ``` ## # A tibble: 5 x 4 ## treatment minority interview weight ## <dbl> <dbl> <dbl> <dbl> ## 1 1 0 0 5.35 ## 2 1 1 0 5.35 ## 3 0 0 0 2.68 ## 4 0 1 0 2.68 ## 5 0 0 0 5.35 ``` ] -- .pull-right[ <p style = "margin-bottom:3.5em;"></p> <center><i>➜ We want to know whether anonymizing resumes helped reducing labor market discrimination toward the minority group</i></center> ] --- ### 1. Causal approach (Behaghel et al., 2015) #### 1.3. Analysis <p style = "margin-bottom:1.5em;"></p> <ul> <li>Authors use the following <b>notations</b></li> <ul> <li>\(An\) indicates whether the resume is <b>anonymous</b></li> <li>\(D\) indicates whether the candidate is from the <b>minority</b></li> <li>\(Y\) indicates whether the candidate obtained an <b>interview</b></li> </ul> </ul> -- <p style = "margin-bottom:2.75em;"></p> <ul> <li>The <b>parameter of interest</b> then writes:</li> </ul> `$$\delta = \underbrace{(\overline{Y}^{An = 1, D = 1} - \overline{Y}^{An = 1, D = 0})}_{\substack{\text{Difference in interview rates}\\ \text{between the majority and the minority}\\ \text{when resumes are anonymized}}} - \underbrace{(\overline{Y}^{An = 0, D = 1} - \overline{Y}^{An = 0, D = 0})}_{\substack{\text{Difference in interview rates}\\ \text{between the majority and the minority}\\ \text{when resumes are } \underline{\text{not}} \text{ anonymized}}}$$` -- <p style = "margin-bottom:2.75em;"></p> <center><b>➜ What sign do you expect for \(\delta\)?</b></center> --- ### 1. Causal approach (Behaghel et al., 2015) #### 1.3. Analysis ```r means <- data_rct %>% group_by(treatment, minority) %>% summarise(means = weighted.mean(interview, weight)) ``` -- <p style = "margin-bottom:-.75em;"></p> <table class="table table-hover table-condensed" style="width: auto !important; margin-left: auto; margin-right: auto;"> <caption></caption> <thead> <tr> <th style="text-align:right;"> treatment </th> <th style="text-align:right;"> minority </th> <th style="text-align:right;"> means </th> </tr> </thead> <tbody> <tr> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> 0.12 </td> </tr> <tr> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 0.09 </td> </tr> <tr> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> 0.18 </td> </tr> <tr> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 0.05 </td> </tr> </tbody> </table> -- <p style = "margin-bottom:.8em;"></p> .pull-left[ ```r means <- means %>% group_by(treatment) %>% summarise(discrim = means[2] - means[1]) ``` <p style = "margin-bottom:-.75em;"></p> <table class="table table-hover table-condensed" style="width: auto !important; margin-left: auto; margin-right: auto;"> <caption></caption> <thead> <tr> <th style="text-align:right;"> treatment </th> <th style="text-align:right;"> discrim </th> </tr> </thead> <tbody> <tr> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> -0.02 </td> </tr> <tr> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> -0.13 </td> </tr> </tbody> </table> ] -- .pull-right[ ```r means$discrim[2] - means$discrim[1] ``` ``` ## [1] -0.1067092 ``` <p style = "margin-bottom:1.25em;"></p> <center><i>The interview rate of the minority is even lower than the majority in the treatment group</i></center> ] --- class: inverse, hide-logo ### Practice #### 1) Estimate this parameter of interest using a regression *Hint: To apply weights in a regression you can indicate the weighting variable in the* `weights` *argument* ```r lm(y ~ x1 + x2 + ..., data, weights = ) ``` -- * Reminder: ```r library(tidyverse) library(haven) data_rct <- read_dta("data_candidates_mainsample.dta") %>% # read .dta data filter(!is.na(CVA)) %>% # Keep participating firms rename(treatment = CVA, minority = ZouI, # Rename variables of interest interview = ENTRETIEN, weight = POIDS_SEL) %>% select(treatment, minority, interview, weight) # Select variables of interest ``` <p style = "margin-bottom:1em;"></p> `$$\delta = \underbrace{(\overline{Y}^{An = 1, D = 1} - \overline{Y}^{An = 1, D = 0})}_{\substack{\text{Difference in interview rates}\\ \text{between the majority and the minority}\\ \text{when resumes are anonymized}}} - \underbrace{(\overline{Y}^{An = 0, D = 1} - \overline{Y}^{An = 0, D = 0})}_{\substack{\text{Difference in interview rates}\\ \text{between the majority and the minority}\\ \text{when resumes are } \underline{\text{not}} \text{ anonymized}}}$$` --
−
+
08
:
00
--- class: inverse, hide-logo ### Solution <ul> <li>We want to see how the effect of the minority variable varies with the treatment variable</li> <ul> <li>In the regression framework, this is what interactions allow to capture</li> </ul> </ul> -- <p style = "margin-bottom:1cm;"></p> `$$Y_i = \alpha + \beta D_i +\gamma An_i + \delta D_i\times An_i + \varepsilon_i$$` -- ```r summary(lm(interview ~ minority + treatment + minority*treatment, data_rct, weights = weight))$coefficients ``` ``` ## Estimate Std. Error t value Pr(>|t|) ## (Intercept) 0.11638530 0.01630149 7.1395491 1.575140e-12 ## minority -0.02365790 0.02368346 -0.9989208 3.180243e-01 ## treatment 0.06101349 0.02419977 2.5212424 1.181630e-02 ## minority:treatment -0.10670915 0.03479712 -3.0666092 2.210982e-03 ``` -- <p style = "margin-bottom:1cm;"></p> <ul> <ul> <li>\(\alpha\) is the interview rate for individuals in both reference groups (majority/control)</li> <li>\(\beta\) is the difference in means between the minority and the majority in the control group</li> <li>\(\gamma\) is the difference in means between the treatment and the control group for the majority group</li> <li>\(\delta\) is how this difference in means between the minority and the majority differ between the treatment and the control group</li> </ul> </ul> --- ### 1. Causal approach (Behaghel et al., 2015) #### 1.3. Analysis <ul> <li>Why the effect is negative?</li> </ul> -- <center><img src = "table7.png" width = "600"/></center> <p style = "margin-bottom:1cm;"></p> <ul> <li>Compare the <b>interview rates</b> of the <b>control group</b> to those of <b>non-participating firms</b></li> <ul> <li><b>Non-participating firms interview way less the minority</b> compared to the control group</li> <li>Only firms who interview as much from the minority as from the majority entered the program</li> </ul> </ul> -- <p style = "margin-bottom:.75cm;"></p> <center><i><b>➜ Selection bias</b></i></center> --- <h3>Overview</h3> <p style = "margin-bottom:3cm;"></p> .pull-left[ <ul style = "margin-left:-.5cm;list-style: none"> <li><b>1. Causal approach (Behaghel et al., 2015) ✔</b></li> <ul style = "list-style: none"> <li>1.1. Structure</li> <li>1.2. Data</li> <li>1.3. Analysis</li> </ul> </ul> <p style = "margin-bottom:1cm;"></p> <ul style = "margin-left:-.5cm;list-style: none"> <li><b>2. Correlational approach (Chetty et al., 2014)</b></li> <ul style = "list-style: none"> <li>2.1. Empirical approach</li> <li>2.2. National results</li> <li>2.3. Spatial variations</li> <li>2.4. Correlational analysis</li> </ul> </ul> ] .pull-right[ <ul style = "margin-left:-1cm;list-style: none"> <li><b>3. Structural approach (Nerlove, 1963)</b></li> <ul style = "list-style: none"> <li>3.1. Motivation</li> <li>3.2. Theoretical modeling</li> <li>3.3. Regression expression</li> </ul> </ul> <p style = "margin-bottom:1cm;"></p> <ul style = "margin-left:-1cm;list-style: none"><li><b>4. Wrap up!</b></li></ul> ] --- <h3>Overview</h3> <p style = "margin-bottom:3cm;"></p> .pull-left[ <ul style = "margin-left:-.5cm;list-style: none"> <li><b>1. Causal approach (Behaghel et al., 2015) ✔</b></li> <ul style = "list-style: none"> <li>1.1. Structure</li> <li>1.2. Data</li> <li>1.3. Analysis</li> </ul> </ul> <p style = "margin-bottom:1cm;"></p> <ul style = "margin-left:-.5cm;list-style: none"> <li><b>2. Correlational approach (Chetty et al., 2014)</b></li> <ul style = "list-style: none"> <li>2.1. Empirical approach</li> <li>2.2. National results</li> <li>2.3. Spatial variations</li> <li>2.4. Correlational analysis</li> </ul> </ul> ] --- ### 2. Correlational approach (Chetty et al., 2014) #### 2.1. Empirical approach <p style = "margin-bottom:3em;"></p> <center><img src = "chetty_abstract.png" width = "850"/></center> --- ### 2. Correlational approach (Chetty et al., 2014) #### 2.1. Empirical approach * How to characterize the <b>joint distribution<b> of <b>parent and child income?<b> -- <p style = "margin-bottom:3em;"></p> **The intergenerational elasticity:** `$$\log(y^c_i) = \alpha + \beta_{IGE}\log(y^p_i)+\varepsilon_i$$` ➜ `\(\hat{\beta}\)` would be the expected percentage increase in child income for a 1% increase in parent income <p style = "margin-bottom:3em;"></p> -- **The rank-rank correlation:** `$$\text{percentile}(y^c_i) = \alpha + \beta_{RRC}\text{percentile}(y^p_i)+\varepsilon_i$$` * In this particular case, because the dependant and the independant variables have the same variance, the regression coefficient equals the correlation coefficient --- ### 2. Correlational approach (Chetty et al., 2014) #### 2.1. Empirical approach <p style = "margin-bottom:1.5cm;"></p> .pull-left[ `$$\begin{align}\beta & = \frac{\text{Cov}(x, y)}{\text{Var}(x)}\\[1em] & = \frac{\text{Cov}(x, y)}{\text{SD}(x)\times\text{SD}(x)} \times \frac{\text{SD}(y)}{\text{SD}(y)}\\[1em] & = \frac{\text{Cov}(x, y)}{\text{SD}(x)\times\text{SD}(y)} \times \frac{\text{SD}(y)}{\text{SD}(x)}\\[1em] & = \text{Cor}(x, y) \times \frac{\text{SD}(y)}{\text{SD}(x)}\end{align}$$` ] -- .pull-right[ <p style = "margin-bottom:2em;"></p> <ul> <li>\(\text{SD}(\log(y^c_i)) \lesseqgtr \text{SD}(\log(y^p_i))\)</li> <ul> <li>The standard deviation of log income can be viewed as a measure of inequality</li> <li>The IGE is sensitive to relative inequality across generations</li> </ul> </ul> <p style = "margin-bottom:2em;"></p> <ul> <li>\(\text{SD}(\text{percentile}(y^c_i)) = \text{SD}(\text{percentile}(y^p_i))\)</li> <ul> <li>The RRC is <i>not</i> sensitive to relative inequality across generations</li> <li>And the regression coefficient indeed equals the correlation coefficient</li> </ul> </ul> ] --- ### 2. Correlational approach (Chetty et al., 2014) #### 2.1. Empirical approach <ul> <li>Here is what the fit of the relationship between parents and child income ranks looks like</li> <ul> <li>We can't see much, even at 1% opacity</li> <li>We can't even tell whether or not a linear fit is appropriate</li> </ul> </ul> <img src="slides_files/figure-html/unnamed-chunk-16-1.png" width="65%" style="display: block; margin: auto;" /> --- ### 2. Correlational approach (Chetty et al., 2014) #### 2.1. Empirical approach <ul> <li>So authors compute the average child rank for each parent percentile group</li> <ul> <li>The resulting visual representation is much clearer</li> <li>And it allows to see whether or not a linear specification is appropriate</li> </ul> </ul> <img src="slides_files/figure-html/unnamed-chunk-17-1.png" width="65%" style="display: block; margin: auto;" /> --- ### 2. Correlational approach (Chetty et al., 2014) #### 2.2. National results <center><img src = "rank_cef.png" width = "650"/></center> --- ### 2. Correlational approach (Chetty et al., 2014) #### 2.2. National results .left-column[ <center><img src = "log_cef.png" width = "650"/></center> ] .right-column[ <p style = "margin-bottom:6em;"></p> <ul> <li>Authors do the same for the IGE</li> </ul> <p style = "margin-bottom:2em;"></p> <ul> <li>For each parent income percentile:</li> <ul> <li>\(x\): Mean parent log income</li> <li>\(y\): Mean child log income</li> </ul> </ul> <p style = "margin-bottom:2em;"></p> <ul> <li>The relationship is non-linear</li> </ul> ] --- ### 2. Correlational approach (Chetty et al., 2014) #### 2.3. Spatial variations <ul> <li>Then authors estimate the rank-rank regression separately for each commuting zone</li> </ul> `$$\text{percentile}(y^c_i) = \alpha + \beta_{RRC}\text{percentile}(y^p_i)+\varepsilon_i$$` <p style = "margin-bottom:2cm;"></p> <ul> <li>From these local estimations they derive <b>two statistics:</b></li> </ul> .pull-left[ <p style = "margin-bottom:1cm;"></p> <center><b>Relative mobility:</b> \(\hat\beta_{RRC}\)</center> <p style = "margin-bottom:.75cm;"></p> <ul> <li>The slope of the rank-rank relationship</li> <ul> <li><b>Expected rank increase</b> for a children had their parents been ranked 1 percentile higher</li> <li>The estimated increase indicates where the children would locate in <b>relative terms</b></li> </ul> </ul> ] .pull-right[ <p style = "margin-bottom:1cm;"></p> <center><b>Absolute mobility:</b> \(\widehat{\alpha} + 25\times\hat\beta_{RRC}\)</center> <p style = "margin-bottom:.75cm;"></p> <ul> <li>The fitted value at \(x = 25\)</li> <ul> <li><b>Expected percentile rank</b> for children whose parents locate at the 25<sup>th</sup> percentile</li> <li>The estimated percentile indicates where the children would locate in <b>absolute terms</b></li> </ul> </ul> ] --- ### 2. Correlational approach (Chetty et al., 2014) #### 2.3. Spatial variations <ul> <li>Here is an illustration on the national-level relationship:</li> <ul> <li></li> <li></li> </ul> </ul> <img src="slides_files/figure-html/unnamed-chunk-18-1.png" width="65%" style="display: block; margin: auto;" /> --- ### 2. Correlational approach (Chetty et al., 2014) #### 2.3. Spatial variations <ul> <li>Here is an illustration on the national-level relationship:</li> <ul> <li>The <b>relative mobility</b> is the slope - the rank-rank correlation</li> <li></li> </ul> </ul> <img src="slides_files/figure-html/unnamed-chunk-19-1.png" width="65%" style="display: block; margin: auto;" /> --- ### 2. Correlational approach (Chetty et al., 2014) #### 2.3. Spatial variations <ul> <li>Here is an illustration on the national-level relationship:</li> <ul> <li>The <b>relative mobility</b> is the slope - the rank-rank correlation</li> <li>The <b>absolute mobility</b> is the fitted value for x = 25</li> </ul> </ul> <img src="slides_files/figure-html/unnamed-chunk-20-1.png" width="65%" style="display: block; margin: auto;" /> --- ### 2. Correlational approach (Chetty et al., 2014) #### 2.3. Spatial variations .left-column[ <center><img src = "local_cef.png" width = "600"/></center> ] .right-column[ <p style = "margin-bottom:6em;"></p> <ul> <li>Authors compute intergenerational persistence in each commuting zone separately</li> </ul> <p style = "margin-bottom:2em;"></p> <ul> <li>And plot the results on a map</li> </ul> ] --- ### 2. Correlational approach (Chetty et al., 2014) #### 2.3. Spatial variations <center><img src = "map.png" width = "700"/></center> --- ### 2. Correlational approach (Chetty et al., 2014) #### 2.4. Correlational analysis <ul> <li>Then they investigate whether local <b>characteristics of commuting zones</b> are related to mobility</li> <li>But regressing directly upward mobility on different characteristics would give:</li> <ul> <li><b>Lower coefficients</b> for variables with <b>bigger metrics</b> (test scores)</li> <li><b>Higher coefficients</b> for variables with <b>smaller metrics</b> (fraction of single mothers)</li> </ul> </ul> -- <p style = "margin-bottom:1em;"></p> <ul> <li>So authors <b>standardize</b> their <b>variables</b> for the comparability of their estimates</li> </ul> <p style = "margin-bottom:2.5em;"></p> -- `$$\beta = \frac{\text{Cov}(\frac{x}{\text{SD}(x)}, \frac{y}{\text{SD}(y)})}{\text{Var}(\frac{x}{\text{SD}(x)})}$$` -- <p style = "margin-bottom:1cm;"></p> .pull-left[ <ul> <li>To simplify this equation, you need to know that:</li> <ul> <li>\(\text{Var}(aX) = a^2\text{Var}(X)\)</li> <li>\(\text{Cov}(aX, bY) =ab\text{Cov}(X, Y)\)</li> </ul> </ul> ] .pull-right[ <center><a href = "https://louissirugue.github.io/metrics_on_R/cheatsheets/moments.pdf"><img style = "margin-bottom:-.5cm;" src = "moments.png" width = "150"/></a> ] --- ### 2. Correlational approach (Chetty et al., 2014) #### 2.4. Correlational analysis <p style = "margin-bottom:2em;"></p> `$$\begin{align}\beta & = \frac{\text{Cov}(\frac{x}{\text{SD}(x)}, \frac{y}{\text{SD}(y)})}{\text{Var}(\frac{x}{\text{SD}(x)})}\\[1em] & = \frac{\frac{1}{\text{SD}(x)\text{SD}(y)}\text{Cov}(x, y)}{\frac{1}{\text{SD}(x)^2}\text{Var}(x)}\\[1em] & = \frac{\text{Cov}(x, y)}{\text{SD}(x)\text{SD}(y)}\times\frac{\text{SD}(x)^2}{\text{Var}(x)}\\[1em] & = \text{Corr}(x, y)\end{align}$$` <p style = "margin-bottom:2em;"></p> -- <center><h4><i>➜ Standardizing variables allows to obtain a correlation coefficient from a regression</i></h4></center> --- ### 2. Correlational approach (Chetty et al., 2014) #### 2.4. Correlational analysis .left-column[ <center><img src = "correlates.png" width = "600"/></center> ] -- .right-column[ <p style = "margin-bottom:6em;"></p> Note that these coefficients combine: <ul> <li>A neighborhood effect</li> <li>A selection effect</li> </ul> ] --- <h3>Overview</h3> <p style = "margin-bottom:3cm;"></p> .pull-left[ <ul style = "margin-left:-.5cm;list-style: none"> <li><b>1. Causal approach (Behaghel et al., 2015) ✔</b></li> <ul style = "list-style: none"> <li>1.1. Structure</li> <li>1.2. Data</li> <li>1.3. Analysis</li> </ul> </ul> <p style = "margin-bottom:1cm;"></p> <ul style = "margin-left:-.5cm;list-style: none"> <li><b>2. Correlational approach (Chetty et al., 2014) ✔</b></li> <ul style = "list-style: none"> <li>2.1. Empirical approach</li> <li>2.2. National results</li> <li>2.3. Spatial variations</li> <li>2.4. Correlational analysis</li> </ul> </ul> ] .pull-right[ <ul style = "margin-left:-1cm;list-style: none"> <li><b>3. Structural approach (Nerlove, 1963)</b></li> <ul style = "list-style: none"> <li>3.1. Motivation</li> <li>3.2. Theoretical modeling</li> <li>3.3. Regression expression</li> </ul> </ul> <p style = "margin-bottom:1cm;"></p> <ul style = "margin-left:-1cm;list-style: none"><li><b>4. Wrap up!</b></li></ul> ] --- <h3>Overview</h3> <p style = "margin-bottom:3cm;"></p> .pull-left[ <ul style = "margin-left:-.5cm;list-style: none"> <li><b>1. Causal approach (Behaghel et al., 2015) ✔</b></li> <ul style = "list-style: none"> <li>1.1. Structure</li> <li>1.2. Data</li> <li>1.3. Analysis</li> </ul> </ul> <p style = "margin-bottom:1cm;"></p> <ul style = "margin-left:-.5cm;list-style: none"> <li><b>2. Correlational approach (Chetty et al., 2014) ✔</b></li> <ul style = "list-style: none"> <li>2.1. Empirical approach</li> <li>2.2. National results</li> <li>2.3. Spatial variations</li> <li>2.4. Correlational analysis</li> </ul> </ul> ] .pull-right[ <ul style = "margin-left:-1cm;list-style: none"> <li><b>3. Structural approach (Nerlove, 1963)</b></li> <ul style = "list-style: none"> <li>3.1. Motivation</li> <li>3.2. Theoretical modeling</li> <li>3.3. Regression expression</li> </ul> </ul> ] --- ### 3. Structural approach (Nerlove, 1963) #### 3.1. Motivation <ul> <li>The <b>structural approach</b> refers to the following methodology:</li> <ol> <li><b>Theoretical modeling</b> of the phenomenon of interest</li> <li><b>Expressing the model</b> parameters <b>as</b> the coefficients of <b>a regression</b></li> <li>Run the corresponding regressions on data to <b>estimate the parameters</b> of the model</li> </ol> </ul> <p style = "margin-bottom:1.75cm;"></p> -- <ul> <li>Structural papers are <b>more and more complex</b> on the theoretical side</li> <ul> <li>The current standards in this literature are beyond the scope of this course</li> <li>So we are going to explore a quite <b>old study</b> for this section</li> </ul> </ul> <p style = "margin-bottom:1.75cm;"></p> -- <ul> <li>Nerlove (1963) studies the <b>returns to scale in the electricity supply industry</b></li> <ul> <li>What is the output elasticity of each input?</li> <li>Are the returns to scale <b>positive or negative?</b></li> </ul> </ul> --- ### 3. Structural approach (Nerlove, 1963) #### 3.1. Motivation * Nerlove (1963) assume the following <b>production function:</b> `$$Y = A L^\lambda K^\kappa F^\varphi u$$` <p style = "margin-bottom:1cm;"></p> -- * And the following <b>cost function:</b> `$$C = p_LL + p_KK+p_FF$$` <p style = "margin-bottom:1.5cm;"></p> -- <center>With:</center> <p style = "margin-bottom:.5cm;"></p> .pull-left[ .pull-left[ <center><b>Inputs</b></center> `$$\begin{align} L:& \text{ Labor input}\\ K:& \text{ Capital input}\\ F:& \text{ Fuel input} \end{align}$$` ] .pull-right[ <center><b>Output elasticities</b></center> `$$\begin{align} \lambda:& \text{ OE of labor}\\ \kappa:& \text{ OE of capital}\\ \varphi:& \text{ OE of fuel} \end{align}$$` ] ] .pull-right[ .pull-left[ <center><b>Prices</b></center> `$$\begin{align} p_L:& \text{ Wage rate}\\ p_K:& \text{ Price of capital}\\ p_F:& \text{ Price of fuel} \end{align}$$` ] .pull-right[ <center><b>Other parameters</b></center> `$$\begin{align} A:& \text{ Total factor}\\ & \text{ productivity}\\ u:& \text{ Efficiency residual} \end{align}$$` ] ] --- ### 3. Structural approach (Nerlove, 1963) #### 3.1. Motivation <ul> <li><b>Theoretically</b> we could <b>estimate</b> the output elasticities <b>directly from the production function</b></li> <ul> <li>The trick is to <b>put everything in log</b> such that the exponents become the parameters of the equation</li> <li>We call this transformation a <b>log-linearization</b></li> </ul> </ul> <p style = "margin-bottom:1.25cm;"></p> `$$\begin{align} \log(Y) & = \log\big(A L^\lambda K^\kappa F^\varphi u\big)\\ &= \log(A) + \log\big(L^\lambda\big) + \log\big(K^\kappa\big) + \log\big(F^\varphi\big) + \log(u)\\ &= \underbrace{\log(A)}_{\text{Constant}} + \lambda\log(L) + \kappa\log(K) + \varphi\log(F) + \underbrace{\log(u)}_{\text{Residuals}} \end{align}$$` <p style = "margin-bottom:1.25cm;"></p> -- <ul> <li>Regressing log output on the log inputs directly gives the <b>elasticities</b></li> <ul> <li>But Nerlove (1963) does not have access to data on firms' inputs</li> <li>Still, he has <b>data on the price</b> of each input</li> <li>His solution is to derive an expression that allows to <b>estimate the elasticities from the price</b></li> </ul> </ul> --- ### 3. Structural approach (Nerlove, 1963) #### 3.2. Theoretical modeling <ul> <li>To <b>simplify</b> algebra, we're going to consider <b>capital and labor only</b></li> <ul> <li>But the principle remains the same</li> <li>We need to <b>solve the model</b> by minimizing the cost constrained by the production function</li> </ul> </ul> `$$\begin{cases} \text{min } & C = p_LL + p_KK\\ \text{s.t. } & Y = A L^\lambda K^\kappa u \end{cases} \,\, \Longleftrightarrow \,\, \text{min }\,\mathcal{L} = p_LL + p_KK + \mu(Y - A L^\lambda K^\kappa u)$$` -- .pull-left[ * Equate partial derivatives to 0 `$$\frac{\partial \mathcal{L}}{\partial L} = 0 \Leftrightarrow p_L = \mu A \lambda L^{\lambda-1}K^\kappa u$$` `$$\frac{\partial \mathcal{L}}{\partial K} = 0 \Leftrightarrow p_K = \mu A \kappa L^\lambda K^{\kappa-1} u$$` `$$\frac{\partial \mathcal{L}}{\partial \mu} = 0 \Leftrightarrow Y = A L^\lambda K^\kappa u$$` ] -- .pull-right[ * Same with `\(K\)` and `\(L\)` as functions of each other `$$\begin{align} \frac{p_L}{p_K} & = \frac{\mu A \lambda L^{\lambda-1}K^\kappa u}{\mu A \kappa L^\lambda K^{\kappa-1} u}\\ & = \frac{\lambda L^{\lambda-1}K^\kappa}{\kappa L^\lambda K^{\kappa-1}} = \frac{\lambda K}{\kappa L} \end{align}$$` <p style = "margin-bottom:-.5cm;"></p> .pull-left[ `$$L = K \frac{p_K}{p_L}\frac{\lambda}{\kappa}$$` ] .pull-right[ `$$K = L \frac{p_L}{p_K}\frac{\kappa}{\lambda}$$` ] ] --- ### 3. Structural approach (Nerlove, 1963) #### 3.2. Theoretical modeling .pull-left[ * Express `\(Y\)` as a function of `\(L\)` only and solve for `\(L\)` `$$Y = A L^\lambda \bigg(L \frac{p_L}{p_K}\frac{\kappa}{\lambda}\bigg)^\kappa u$$` `$$L^{\lambda+\kappa} =\frac{Y}{Au}\frac{1}{\bigg(\frac{p_L}{p_K}\frac{\kappa}{\lambda}\bigg)^\kappa}$$` $$ L= \left[\frac{Y}{Au}\frac{1}{\bigg(\frac{p_L}{p_K}\frac{\kappa}{\lambda}\bigg)^\kappa}\right]^{\frac{1}{\lambda + \kappa}} = \bigg(\frac{Y}{Au}\bigg)^\frac{1}{\lambda + \kappa}\bigg(\frac{p_K}{p_L}\frac{\lambda}{\kappa}\bigg)^\frac{\kappa}{\lambda+\kappa}$$ ] -- .pull-right[ * Same with `\(K\)` `$$Y = A \bigg(K \frac{p_K}{p_L}\frac{\lambda}{\kappa}\bigg)^\lambda K^\kappa u$$` `$$K^{\lambda+\kappa} =\frac{Y}{Au}\frac{1}{\bigg(\frac{p_K}{p_L}\frac{\lambda}{\kappa}\bigg)^\lambda}$$` `$$K = \left[\frac{Y}{Au}\frac{1}{\bigg(\frac{p_K}{p_L}\frac{\lambda}{\kappa}\bigg)^\lambda}\right]^{\frac{1}{\lambda + \kappa}} = \bigg(\frac{Y}{Au}\bigg)^\frac{1}{\lambda + \kappa}\bigg(\frac{p_L}{p_K}\frac{\kappa}{\lambda}\bigg)^\frac{\lambda}{\lambda+\kappa}$$` ] --- ### 3. Structural approach (Nerlove, 1963) #### 3.2. Theoretical modeling * Inject `\(K\)` and `\(L\)` back in the cost function and factorize `$$C =p_L\bigg(\frac{Y}{Au}\bigg)^\frac{1}{\lambda + \kappa}\bigg(\frac{p_K}{p_L}\frac{\lambda}{\kappa}\bigg)^\frac{\kappa}{\lambda+\kappa} + p_K\bigg(\frac{Y}{Au}\bigg)^\frac{1}{\lambda + \kappa}\bigg(\frac{p_L}{p_K}\frac{\kappa}{\lambda}\bigg)^\frac{\lambda}{\lambda+\kappa}$$` -- <p style = "margin-bottom:.8cm;"></p> `$$C =\bigg(\frac{Y}{Au}\bigg)^\frac{1}{\lambda + \kappa}\left[p_L\bigg(\frac{p_K}{p_L}\frac{\lambda}{\kappa}\bigg)^\frac{\kappa}{\lambda+\kappa} + p_K\bigg(\frac{p_L}{p_K}\frac{\kappa}{\lambda}\bigg)^\frac{\lambda}{\lambda+\kappa}\right]$$` -- <p style = "margin-bottom:.8cm;"></p> `$$C =\bigg(\frac{Y}{Au}\bigg)^\frac{1}{\lambda + \kappa}\left[p_L^{1 -\frac{\kappa}{\lambda+\kappa}}p_K^{\frac{\kappa}{\lambda+\kappa} }\bigg(\frac{\lambda}{\kappa}\bigg)^\frac{\kappa}{\lambda+\kappa} + p_K^{1 - \frac{\lambda}{\lambda+\kappa}}p_L^{\frac{\lambda}{\lambda+\kappa} }\bigg(\frac{\kappa}{\lambda}\bigg)^\frac{\lambda}{\lambda+\kappa}\right]$$` -- <p style = "margin-bottom:.8cm;"></p> `$$C =\bigg(\frac{Y}{Au}\bigg)^\frac{1}{\lambda + \kappa}\left[p_L^{\frac{\lambda}{\lambda+\kappa}}p_K^{\frac{\kappa}{\lambda+\kappa} }\bigg(\frac{\lambda}{\kappa}\bigg)^\frac{\kappa}{\lambda+\kappa} + p_K^{\frac{\kappa}{\lambda+\kappa}}p_L^{\frac{\lambda}{\lambda+\kappa} }\bigg(\frac{\kappa}{\lambda}\bigg)^\frac{\lambda}{\lambda+\kappa}\right]$$` --- ### 3. Structural approach (Nerlove, 1963) #### 3.2. Theoretical modeling `$$C =\bigg(\frac{Y}{Au}\bigg)^\frac{1}{\lambda + \kappa}\left[p_L^{\frac{\lambda}{\lambda+\kappa}}p_K^{\frac{\kappa}{\lambda+\kappa} }\bigg(\frac{\lambda}{\kappa}\bigg)^\frac{\kappa}{\lambda+\kappa} + p_K^{\frac{\kappa}{\lambda+\kappa}}p_L^{\frac{\lambda}{\lambda+\kappa} }\bigg(\frac{\kappa}{\lambda}\bigg)^\frac{\lambda}{\lambda+\kappa}\right]$$` -- <p style = "margin-bottom:1cm;"></p> `$$C =\bigg(\frac{Y}{Au}\bigg)^\frac{1}{\lambda + \kappa}p_L^{\frac{\lambda}{\lambda+\kappa}}p_K^{\frac{\kappa}{\lambda+\kappa} }\left[\bigg(\frac{\lambda}{\kappa}\bigg)^\frac{\kappa}{\lambda+\kappa} +\bigg(\frac{\kappa}{\lambda}\bigg)^\frac{\lambda}{\lambda+\kappa}\right]$$` -- <p style = "margin-bottom:1.5cm;"></p> * Isolate what's constant, each variable, and the residual term: <p style = "margin-bottom:1cm;"></p> `$$C =\underbrace{\left[\frac{\big(\frac{\lambda}{\kappa}\big)^\kappa +\big(\frac{\kappa}{\lambda}\big)^\lambda}{A}\right]^\frac{1}{\lambda + \kappa}}_{\text{Constant}} \times\underbrace{Y^\frac{1}{\lambda + \kappa}}_{\text{Output}} \times\underbrace{p_L^{\frac{\lambda}{\lambda+\kappa}}}_{\text{Wage}}\times\underbrace{p_K^{\frac{\kappa}{\lambda+\kappa} }}_{\substack{\text{Price of}\\\text{Capital}}}\times\underbrace{u^\frac{1}{\lambda+\kappa}}_{\substack{\text{Residual}\\\text{term}}}$$` --- ### 3. Structural approach (Nerlove, 1963) #### 3.3. Regression expression <ul> <li>At this stage we can <b>log-linearize the equation:</b></li> </ul> `$$C =\underbrace{\left[\frac{\big(\frac{\lambda}{\kappa}\big)^\kappa +\big(\frac{\kappa}{\lambda}\big)^\lambda}{A}\right]^\frac{1}{\lambda + \kappa}}_{\text{Constant}} \times\underbrace{Y^\frac{1}{\lambda + \kappa}}_{\text{Output}} \times\underbrace{p_L^{\frac{\lambda}{\lambda+\kappa}}}_{\text{Wage}}\times\underbrace{p_K^{\frac{\kappa}{\lambda+\kappa} }}_{\substack{\text{Price of}\\\text{Capital}}}\times\underbrace{u^\frac{1}{\lambda+\kappa}}_{\substack{\text{Residual}\\\text{term}}}$$` -- <p style = "margin-bottom:.8cm;"></p> `$$\log (C) =\log \Bigg(\left[\frac{\big(\frac{\lambda}{\kappa}\big)^\kappa +\big(\frac{\kappa}{\lambda}\big)^\lambda}{A}\right]^\frac{1}{\lambda + \kappa} \Bigg) + \log \bigg(Y^\frac{1}{\lambda + \kappa}\bigg) + \log \bigg(p_L^{\frac{\lambda}{\lambda+\kappa}}\bigg) + \log \bigg(p_K^{\frac{\kappa}{\lambda+\kappa} }\bigg) + \log \bigg(u^\frac{1}{\lambda+\kappa}\bigg)$$` -- <p style = "margin-bottom:.8cm;"></p> `$$\log (C) = \underbrace{\log \Bigg(\left[\frac{\big(\frac{\lambda}{\kappa}\big)^\kappa +\big(\frac{\kappa}{\lambda}\big)^\lambda}{A}\right]^\frac{1}{\lambda + \kappa} \Bigg)}_{\alpha} + \underbrace{\frac{1}{\lambda + \kappa}}_{\beta}\log(Y) + \underbrace{\frac{\lambda}{\lambda+\kappa}}_{\gamma}\log(p_L) + \underbrace{\frac{\kappa}{\lambda+\kappa}}_{\delta}\log(p_K) + \underbrace{\log \bigg(u^\frac{1}{\lambda+\kappa}\bigg)}_{\varepsilon}$$` --- ### 3. Structural approach (Nerlove, 1963) #### 3.3. Regression expression <ul> <li>Finally we end up with this <b>regression model:</b></li> <ul> <li>Where <b>coefficients</b> are <b>composite</b> objects of the <b>parameters</b> of the structural model</li> </ul> </ul> `$$\log(C)= \alpha + \beta\log(Y) + \gamma\log(p_L) + \delta\log(p_K) + \varepsilon$$` -- <p style = "margin-bottom:1.5cm;"></p> <ul> <li>But note that to <b>test for CRS</b>, we don't even need to derive \(\kappa\) and \(\lambda\) explicitely</li> </ul> `$$\gamma = \frac{\lambda}{\lambda + \kappa} \,\,\,\, ; \,\,\,\, \delta = \frac{\kappa}{\lambda + \kappa}$$` -- <p style = "margin-bottom:1.5cm;"></p> <ul> <li>Indeed, the <b>null hypothesis</b> for constant returns to scales writes</li> </ul> $$H_0: \lambda + \kappa = 1 \,\,\,\, \Leftrightarrow \,\,\,\, \frac{\lambda + \kappa}{\lambda + \kappa} = \frac{1}{1} \,\,\,\, \Leftrightarrow \,\,\,\, \frac{\lambda}{\lambda + \kappa} + \frac{\kappa}{\lambda + \kappa} = 1 \,\,\,\, \Leftrightarrow \,\,\,\, \gamma + \delta = 1 $$ --- class: inverse, hide-logo ### Practice #### 1) Import the dataset from Nerlove (1963) ```r library(haven) nerlove <- read_dta("nerlove63.dta") str(nerlove, give.attr = F) ``` ``` ## tibble [145 x 5] (S3: tbl_df/tbl/data.frame) ## $ totcost: num [1:145] 0.082 0.661 0.99 0.315 0.197 ... ## $ output : num [1:145] 2 3 4 4 5 9 11 13 13 22 ... ## $ plabor : num [1:145] 2.09 2.05 2.05 1.83 2.12 ... ## $ pfuel : num [1:145] 17.9 35.1 35.1 32.2 28.6 ... ## $ pkap : num [1:145] 183 174 171 166 233 195 206 150 155 188 ... ``` -- <p style = "margin-bottom:1cm;"></p> #### 2) Estimate the parameters of this regression: `$$\log(C)= \alpha + \beta\log(Y) + \gamma\log(p_L) + \delta\log(p_K) + \varepsilon$$` <p style = "margin-bottom:1.25cm;"></p> -- #### 3) Use `linearHypothesis()` from the `car` package to test for CRS --
−
+
08
:
00
--- class: inverse, hide-logo ### Solution #### Estimate the parameters of this regression: `$$\log(C)= \alpha + \beta\log(Y) + \gamma\log(p_L) + \delta\log(p_K) + \varepsilon$$` -- ```r summary(lm(log(totcost) ~ log(output) + log(plabor) + log(pkap), nerlove))$coefficients ``` ``` ## Estimate Std. Error t value Pr(>|t|) ## (Intercept) -3.82905582 1.87712121 -2.0398554 4.323183e-02 ## log(output) 0.70706725 0.01819229 38.8663200 3.187712e-77 ## log(plabor) 0.89957689 0.28572006 3.1484555 2.003726e-03 ## log(pkap) 0.06079561 0.35250457 0.1724676 8.633172e-01 ``` -- <p style = "margin-bottom:1.25em;"></p> #### Use `linearHypothesis()` from the `car` package to test for CRS -- ```r library(car) linearHypothesis(lm(log(totcost) ~ log(output) + log(plabor) + log(pkap), nerlove), "log(plabor) + log(pkap) = 1") ``` --- class: inverse, hide-logo ### Solution ```r linearHypothesis(lm(log(totcost) ~ log(output) + log(plabor) + log(pkap), nerlove), "log(plabor) + log(pkap) = 1") ``` ``` ## Linear hypothesis test ## ## Hypothesis: ## log(plabor) + log(pkap) = 1 ## ## Model 1: restricted model ## Model 2: log(totcost) ~ log(output) + log(plabor) + log(pkap) ## ## Res.Df RSS Df Sum of Sq F Pr(>F) ## 1 142 24.333 ## 2 141 24.332 1 0.0011159 0.0065 0.936 ``` -- <p style = "margin-bottom:1cm;"></p> <ul> <li>The p-value is equal to 93.6%</li> <ul> <li>We cannot reject the hypothesis of constant returns to scale</li> <li>\(\hat\gamma + \hat\delta = .96\) is not sufficiently far from \(1\) to reject that \(\gamma + \delta = 1\)</li> </ul> </ul> --- <h3>Overview</h3> <p style = "margin-bottom:3cm;"></p> .pull-left[ <ul style = "margin-left:-.5cm;list-style: none"> <li><b>1. Causal approach (Behaghel et al., 2015) ✔</b></li> <ul style = "list-style: none"> <li>1.1. Structure</li> <li>1.2. Data</li> <li>1.3. Analysis</li> </ul> </ul> <p style = "margin-bottom:1cm;"></p> <ul style = "margin-left:-.5cm;list-style: none"> <li><b>2. Correlational approach (Chetty et al., 2014) ✔</b></li> <ul style = "list-style: none"> <li>2.1. Empirical approach</li> <li>2.2. National results</li> <li>2.3. Spatial variations</li> <li>2.4. Correlational analysis</li> </ul> </ul> ] .pull-right[ <ul style = "margin-left:-1cm;list-style: none"> <li><b>3. Structural approach (Nerlove, 1963) ✔</b></li> <ul style = "list-style: none"> <li>3.1. Motivation</li> <li>3.2. Theoretical modeling</li> <li>3.3. Regression expression</li> </ul> </ul> <p style = "margin-bottom:1cm;"></p> <ul style = "margin-left:-1cm;list-style: none"><li><b>4. Wrap up!</b></li></ul> ] --- ### 4. Wrap up! #### Causal approach (Behaghel et al., 2015) * Applicants resumes randomly anonymized or not before being sent to employers -- `$$Y_i = \alpha + \beta D_i +\gamma An_i + \delta D_i\times An_i + \varepsilon_i$$` * `\(\hat{\delta}\)` captures how the difference in interview rates between the minority and the majority differs between the treated and the control employers -- ```r summary(lm(interview ~ minority + treatment + minority*treatment, data_rct, weights = weight))$coefficients ``` ``` ## Estimate Std. Error t value Pr(>|t|) ## (Intercept) 0.11638530 0.01630149 7.1395491 1.575140e-12 ## minority -0.02365790 0.02368346 -0.9989208 3.180243e-01 ## treatment 0.06101349 0.02419977 2.5212424 1.181630e-02 ## minority:treatment -0.10670915 0.03479712 -3.0666092 2.210982e-03 ``` <p style = "margin-bottom:1cm;"></p> <center><h4> ➜ Self-selection issue: discriminatory employers did not enter the program </h4></center> --- ### 4. Wrap up! #### Correlational approach (Chetty et al., 2014) `$$\text{percentile}(y^c_i) = \alpha + \beta_{RRC}\text{percentile}(y^p_i)+\varepsilon_i$$` -- .left-column[ <center><img src = "local_cef.png" width = "520"/></center> ] -- .right-column[ **Relative mobility:** `\(\widehat{\beta_{RRC}}\)` **Absolute mobility:** `\(\widehat{\alpha} + 25\times\widehat{\beta_{RRC}}\)` <p style = "margin-bottom:1cm;"></p> <ul> <li>Strong persitence in the United-States</li> <li>Large variations across commuting zones</li> <li>Intergenerational mobility correlated with characteristics of childhood environment</li> </ul> ] --- ### 4. Wrap up! #### Structural approach (Nerlove, 1963) * **Theoretical modeling** `$$\begin{cases} \text{min } & C = p_LL + p_KK\\ \text{s.t. } & Y = A L^\lambda K^\kappa u \end{cases} \,\, \Longleftrightarrow \,\, \text{min }\,\mathcal{L} = p_LL + p_KK + \mu(Y - A L^\lambda K^\kappa u)$$` -- <p style = "margin-bottom:1cm;"></p> * **Regression expression** `$$\log (C) = \underbrace{\log \Bigg(\left[\frac{\big(\frac{\lambda}{\kappa}\big)^\kappa +\big(\frac{\kappa}{\lambda}\big)^\lambda}{A}\right]^\frac{1}{\lambda + \kappa} \Bigg)}_{\alpha} + \underbrace{\frac{1}{\lambda + \kappa}}_{\beta}\log(Y) + \underbrace{\frac{\lambda}{\lambda+\kappa}}_{\gamma}\log(p_L) + \underbrace{\frac{\kappa}{\lambda+\kappa}}_{\delta}\log(p_K) + \underbrace{\log \bigg(u^\frac{1}{\lambda+\kappa}\bigg)}_{\varepsilon}$$` -- <p style = "margin-bottom:1cm;"></p> * **Estimation** `$$\log(C)= \alpha + \beta\log(Y) + \gamma\log(p_L) + \delta\log(p_K) + \varepsilon \,\,\,\, \Rightarrow \,\,\,\, H_0: \gamma + \delta = 1$$`