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Quick reminder

Standard interpretations

When both  and  are continuous, the general template for the interpretation of  is:

"Everything else equal, a 1 [unit] increase in [x] is associated with
an [in/de]crease of [beta] [units] in [y] on average."

With a discrete , the interpretation of the coefficient must be relative to the reference category:

"Everything else equal, belonging to the [x category] is associated with
a [beta] [unit] [higher/lower] average [y] relative to the [reference category]."

With a binary  variable, the coefficient must be interpreted in percentage points:

"Everything else equal, a 1 [unit] increase in [x] is associated with
a [beta  100] percentage point [in/de]crease in the probability that [y equals 1] on average."

x y β̂

x

y

×
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Standardization

To standardize a variable is to divide it by its SD
The variation of a standardized variable
should not be interpreted in units but in SD
For instance if  and  are continuous and 
is standardized, the interpretation becomes:

"Everything else equal, a 1 standard deviation increase
in [x] is associated with an [in/de]crease of [beta] [units]

in [y] on average."

If both  and  are standardized, the slope is the
correlation coefficient between  and 

Log-transformation

The log transformation allows to interpret the
coefficient in percentage terms:

Interpretation of the regression coefficient
y log(y)

x
 is the unit increase
in  due to a 1 unit

increase in 

 is the %
increase in  due to

a 1 unit increase in 

log(x)
 is the unit

increase in  due to
a 1% increase in 

 is the % increase in
 due to a 1%

increase in 

Quick reminder

Interpretations with variable transformation

x y x
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Birth weight

(1) (2)

Household income 0.002*** 0.002***

(0.0003) (0.0003)

Girl (ref: Boy) -141.943***

(34.878)

Constant 3,127.146*** 3,247.126***

(16.188) (33.520)

Observations 1,000 963

R2 0.047 0.063

Note: *p<0.1; **p<0.05; ***p<0.01

Regression tables often contain multiple regressions:

With one regression in each column

And one variable in each row
With the point estimate
And a precision measure below

General info on each model at the bottom
Number of observations

A symbology for the p-value testing whether the
coefficient is significantly different from 0 or not

Quick reminder

Regression table layout

R2 = 1 −
∑n

i=1 ε̂i
2

∑n
i=1(yi−ȳ)2
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1. Causal approach (Behaghel et al., 2015)

1.1. Structure

Research papers always start with an abstract that briefly describes the study:
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Typical structure of an empirical research paper:

Introduction/literature

Data/Descriptive statistics

Empirical framework

Results

(Heterogeneity)

Robustness checks

Conclusion

Structure of Behaghel et al. (2015) is this one:

Introduction
Institutional Background
Experiment and Data Collection

Program and Experimental Design
Data Collection

Impact of Anonymous Résumés
Interview Rates
Hiring Rates
Recruitment Success
Robustness Checks

Mechanisms
Firms’ Participation Decision
Résumé Valuation by Participating Firms

Conclusion

1. Causal approach (Behaghel et al., 2015)

1.1. Structure
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1. Causal approach (Behaghel et al., 2015)

1.1. Structure

Program and Experimental Design

1. Firm entry in the program: Firms with more than 50 employees posting vacancies lasting at least three
months at the public employment service (PES) were offered to enter the program, which consists in having a
50% chance to receive anonymized instead of standard resumes for that vacancy.

2. Matching of resumes with vacancies: The PES posts the vacancy on a variety of media, including a public
website asking interested job seekers to apply through the PES branch. The PES agent selects resumes from
these applicants and from internal databases of job seekers.

3. Randomization and anonymization: Resumes are randomly anonymized or not with a 50% probability and
sent to the employer.

4. Selection of resumes by the employer: The employer selects the resumes of applicants she would like to
interview and contact them (through the PES if resumes are anonymized).
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1. Causal approach (Behaghel et al., 2015)

1.2. Data

Data sources

1. Administrative data
Coverage: All firms and all job seekers who used the public employment services in the experimental
areas during (and after) the program
Content: information on the firm (size, sector), on the job position offered (occupation level, type of
contract) and limited information on candidates (unless the candidate is filed as unemployed)

2. Telephone interviews:
Coverage: All firms entering the program, a subsample of firms that declined to participate, subsamples
of applicants to vacancies posted by these two groups of firms both during and after the experiment
Content: additional characteristics of the vacancy and of the recruiter (characteristics that could be
associated with a differential treatment of candidates), questions on the result of the recruitment (time to
hiring and match quality)
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1,005 firms entered the program (608 declined):
385 firms in the control group
366 firms in the treatment group
254 firms not allocated because canceled or job filled too early

Sample of 1,268 applicants:
660 to vacancies from the control group
608 to vacancies from the treatment group
203 to vacancies from firms that withdrew before randomization

Main variables:
Whether the candidates is from the minority or the majority
Whether the resume was anonymized
Whether the employer called back for an interview

Authors use sampling weights:
Representativity of the sample
Non-response bias correction
The weight associated with an
individual can be viewed as the
number of individuals she
represents

1. Causal approach (Behaghel et al., 2015)

1.2. Data

Sample description
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1. Causal approach (Behaghel et al., 2015)

1.2. Data

Import the data

library(haven)

data_rct <- read_dta("data_candidates_mainsample.dta")

View(data_rct)
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## # A tibble: 5 x 4

##   treatment minority interview weight

##       <dbl>    <dbl>     <dbl>  <dbl>

## 1         1        0         0   5.35

## 2         1        1         0   5.35

## 3         0        0         0   2.68

## 4         0        1         0   2.68

## 5         0        0         0   5.35

➜ We want to know whether anonymizing resumes
helped reducing labor market discrimination toward the

minority group

1. Causal approach (Behaghel et al., 2015)

1.2. Data

Subset the data

data_rct <- data_rct %>% 

  filter(!is.na(CVA)) %>%                      # Keep participating firms

  select(treatment = CVA,                      # Select and rename variables 

         minority = ZouI,                      # of interest

         interview = ENTRETIEN, 

         weight = POIDS_SEL)

head(data_rct, 5)
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1. Causal approach (Behaghel et al., 2015)

1.3. Analysis

Authors use the following notations
 indicates whether the resume is anonymous

 indicates whether the candidate is from the minority
 indicates whether the candidate obtained an interview

The parameter of interest then writes:

➜ What sign do you expect for ?

An
D
Y

δ = (
¯̄¯̄
Y

An=1,D=1
−

¯̄¯̄
Y

An=1,D=0
)


Difference in interview rates

between the majority and the minority
when resumes are anonymized

− (
¯̄¯̄
Y

An=0,D=1
−

¯̄¯̄
Y

An=0,D=0
)


Difference in interview rates

between the majority and the minority
when resumes are not–––– anonymized

δ
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means <- means %>% group_by(treatment) %>%

  summarise(discrim = means[2] - means[1])

treatment discrim

0 -0.02

1 -0.13

means$discrim[2] - means$discrim[1]

## [1] -0.1067092

The interview rate of the minority is even lower than the
majority in the treatment group

1. Causal approach (Behaghel et al., 2015)

1.3. Analysis

means <- data_rct %>% 

  group_by(treatment, minority) %>%

  summarise(means = weighted.mean(interview, weight))

treatment minority means

0 0 0.12

0 1 0.09

1 0 0.18

1 1 0.05
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Practice

1) Estimate this parameter of interest using a regression

Hint: To apply weights in a regression you can indicate the weighting variable in the weights argument

lm(y ~ x1 + x2 + ..., data, weights = )

Reminder:

library(tidyverse)

library(haven)

data_rct <- read_dta("data_candidates_mainsample.dta") %>%      # read .dta data

  filter(!is.na(CVA)) %>%                                       # Keep participating firms

  rename(treatment = CVA, minority = ZouI,                      # Rename variables of interest

         interview = ENTRETIEN, weight = POIDS_SEL) %>% 

  select(treatment, minority, interview, weight)                # Select variables of interest

δ = (
¯̄¯̄
Y

An=1,D=1
−

¯̄¯̄
Y

An=1,D=0
)


Difference in interview rates

between the majority and the minority
when resumes are anonymized

− (
¯̄¯̄
Y

An=0,D=1
−

¯̄¯̄
Y

An=0,D=0
)


Difference in interview rates

between the majority and the minority
when resumes are not

––––
 anonymized

16 / 54

08:00



Solution

We want to see how the effect of the minority variable varies with the treatment variable
In the regression framework, this is what interactions allow to capture

summary(lm(interview ~ minority + treatment + minority*treatment, 

           data_rct, weights = weight))$coefficients

##                       Estimate Std. Error    t value     Pr(>|t|)

## (Intercept)         0.11638530 0.01630149  7.1395491 1.575140e-12

## minority           -0.02365790 0.02368346 -0.9989208 3.180243e-01

## treatment           0.06101349 0.02419977  2.5212424 1.181630e-02

## minority:treatment -0.10670915 0.03479712 -3.0666092 2.210982e-03

 is the interview rate for individuals in both reference groups (majority/control)
 is the difference in means between the minority and the majority in the control group
 is the difference in means between the treatment and the control group for the majority group
 is how this difference in means between the minority and the majority differ between the treatment and

the control group

Yi = α + βDi + γAni + δDi × Ani + εi

α
β
γ
δ
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1. Causal approach (Behaghel et al., 2015)

1.3. Analysis

Why the effect is negative?

Compare the interview rates of the control group to those of non-participating firms
Non-participating firms interview way less the minority compared to the control group
Only firms who interview as much from the minority as from the majority entered the program

➜ Selection bias
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3. Structural approach (Nerlove, 1963)
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2. Correlational approach (Chetty et al., 2014)

2.1. Empirical approach
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2. Correlational approach (Chetty et al., 2014)

2.1. Empirical approach

How to characterize the joint distribution of parent and child income?

The intergenerational elasticity:

➜  would be the expected percentage increase in child income for a 1% increase in parent income

The rank-rank correlation:

In this particular case, because the dependant and the independant variables have the same variance,
the regression coefficient equals the correlation coefficient

log(yc
i ) = α + βIGE log(y

p

i ) + εi

β̂

percentile(yc
i ) = α + βRRCpercentile(y

p

i ) + εi
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The standard deviation of log income can be
viewed as a measure of inequality
The IGE is sensitive to relative inequality
across generations

The RRC is not sensitive to relative inequality
across generations
And the regression coefficient indeed equals
the correlation coefficient

2. Correlational approach (Chetty et al., 2014)

2.1. Empirical approach

β =

= ×

= ×

= Cor(x, y) ×

Cov(x, y)

Var(x)

Cov(x, y)

SD(x) × SD(x)

SD(y)

SD(y)

Cov(x, y)

SD(x) × SD(y)

SD(y)

SD(x)

SD(y)

SD(x)

SD(log(yc
i )) ⋚ SD(log(y

p

i ))

SD(percentile(yc
i )) = SD(percentile(y

p

i ))
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2. Correlational approach (Chetty et al., 2014)

2.1. Empirical approach

Here is what the fit of the relationship between parents and child income ranks looks like
We can't see much, even at 1% opacity
We can't even tell whether or not a linear fit is appropriate
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2. Correlational approach (Chetty et al., 2014)

2.1. Empirical approach

So authors compute the average child rank for each parent percentile group
The resulting visual representation is much clearer
And it allows to see whether or not a linear specification is appropriate
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2. Correlational approach (Chetty et al., 2014)

2.2. National results
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Authors do the same for the IGE

For each parent income percentile:
: Mean parent log income
: Mean child log income

The relationship is non-linear

2. Correlational approach (Chetty et al., 2014)

2.2. National results

x
y
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Relative mobility: 

The slope of the rank-rank relationship
Expected rank increase for a children had
their parents been ranked 1 percentile higher
The estimated increase indicates where the
children would locate in relative terms

Absolute mobility: 

The fitted value at 
Expected percentile rank for children
whose parents locate at the 25th percentile
The estimated percentile indicates where the
children would locate in absolute terms

2. Correlational approach (Chetty et al., 2014)

2.3. Spatial variations

Then authors estimate the rank-rank regression separately for each commuting zone

From these local estimations they derive two statistics:

percentile(yc
i ) = α + βRRCpercentile(y

p

i ) + εi

β̂RRC α̂ + 25 × β̂RRC

x = 25
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2. Correlational approach (Chetty et al., 2014)

2.3. Spatial variations

Here is an illustration on the national-level relationship:
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2. Correlational approach (Chetty et al., 2014)

2.3. Spatial variations

Here is an illustration on the national-level relationship:
The relative mobility is the slope - the rank-rank correlation
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2. Correlational approach (Chetty et al., 2014)

2.3. Spatial variations

Here is an illustration on the national-level relationship:
The relative mobility is the slope - the rank-rank correlation
The absolute mobility is the fitted value for x = 25
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Authors compute intergenerational
persistence in each commuting
zone separately

And plot the results on a map

2. Correlational approach (Chetty et al., 2014)

2.3. Spatial variations

32 / 54

https://louissirugue.github.io/metrics_on_R/home.html


2. Correlational approach (Chetty et al., 2014)

2.3. Spatial variations
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To simplify this equation, you need to know that:

2. Correlational approach (Chetty et al., 2014)

2.4. Correlational analysis

Then they investigate whether local characteristics of commuting zones are related to mobility
But regressing directly upward mobility on different characteristics would give:

Lower coefficients for variables with bigger metrics (test scores)
Higher coefficients for variables with smaller metrics (fraction of single mothers)

So authors standardize their variables for the comparability of their estimates

β =
Cov( , )x

SD(x)

y

SD(y)

Var( )x

SD(x)

Var(aX) = a2Var(X)
Cov(aX, bY ) = abCov(X, Y )
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2. Correlational approach (Chetty et al., 2014)

2.4. Correlational analysis

➜ Standardizing variables allows to obtain a correlation coefficient from a regression

β =

=

= ×

= Corr(x, y)

Cov( , )x

SD(x)

y

SD(y)

Var( )x

SD(x)

Cov(x, y)1
SD(x)SD(y)

Var(x)1
SD(x)2

Cov(x, y)

SD(x)SD(y)

SD(x)2

Var(x)
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Note that these coefficients combine:

A neighborhood effect
A selection effect

2. Correlational approach (Chetty et al., 2014)

2.4. Correlational analysis
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3. Structural approach (Nerlove, 1963)

3.1. Motivation

The structural approach refers to the following methodology:
1. Theoretical modeling of the phenomenon of interest
2. Expressing the model parameters as the coefficients of a regression
3. Run the corresponding regressions on data to estimate the parameters of the model

Structural papers are more and more complex on the theoretical side
The current standards in this literature are beyond the scope of this course
So we are going to explore a quite old study for this section

Nerlove (1963) studies the returns to scale in the electricity supply industry
What is the output elasticity of each input?
Are the returns to scale positive or negative?
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Inputs Output elasticities Prices Other parameters

3. Structural approach (Nerlove, 1963)

3.1. Motivation

Nerlove (1963) assume the following production function:

And the following cost function:

With:

Y = ALλKκF φu

C = pLL + pKK + pF F

L : Labor input

K : Capital input

F : Fuel input

λ : OE of labor

κ : OE of capital

φ : OE of fuel

pL : Wage rate

pK : Price of capital

pF : Price of fuel

A : Total factor

 productivity

u : Efficiency residual
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3. Structural approach (Nerlove, 1963)

3.1. Motivation

Theoretically we could estimate the output elasticities directly from the production function
The trick is to put everything in log such that the exponents become the parameters of the equation
We call this transformation a log-linearization

Regressing log output on the log inputs directly gives the elasticities
But Nerlove (1963) does not have access to data on firms' inputs
Still, he has data on the price of each input
His solution is to derive an expression that allows to estimate the elasticities from the price

log(Y ) = log (ALλKκF φu)

= log(A) + log (Lλ) + log (Kκ) + log (F φ) + log(u)

= log(A)

Constant

+ λ log(L) + κ log(K) + φ log(F) + log(u)

Residuals
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Equate partial derivatives to 0 Same with  and  as functions of each other

3. Structural approach (Nerlove, 1963)

3.2. Theoretical modeling

To simplify algebra, we're going to consider capital and labor only
But the principle remains the same
We need to solve the model by minimizing the cost constrained by the production function

{min  C = pLL + pKK

s.t.  Y = ALλKκu
⟺ min L = pLL + pKK + μ(Y − ALλKκu)

= 0 ⇔ pL = μAλLλ−1Kκu
∂L

∂L

= 0 ⇔ pK = μAκLλKκ−1u
∂L

∂K

= 0 ⇔ Y = ALλKκu
∂L

∂μ

K L

=

= =

pL

pK

μAλLλ−1Kκu

μAκLλKκ−1u

λLλ−1Kκ

κLλKκ−1

λK

κL

L = K
pK

pL

λ

κ
K = L

pL

pK

κ

λ
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Express  as a function of  only and solve for Same with 

3. Structural approach (Nerlove, 1963)

3.2. Theoretical modeling

Y L L

Y = ALλ(L )
κ

u
pL

pK

κ

λ

Lλ+κ =
Y

Au

1

( )
κ

pL

pK

κ
λ

L =

⎡
⎢⎢⎢⎢
⎣

⎤
⎥⎥⎥⎥
⎦

= ( ) ( )
Y

Au

1

( )
κ

pL

pK

κ

λ

1
λ+κ

Y

Au

1
λ+κ pK

pL

λ

κ

κ

λ+κ

K

Y = A(K )
λ

Kκu
pK

pL

λ

κ

Kλ+κ =
Y

Au

1

( )
λ

pK

pL

λ
κ

K =

⎡
⎢⎢⎢⎢
⎣

⎤
⎥⎥⎥⎥
⎦

= ( ) ( )Y

Au

1

( )
λ

pK

pL

λ
κ

1
λ+κ

Y

Au

1
λ+κ pL

pK

κ

λ

λ

λ+κ
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3. Structural approach (Nerlove, 1963)

3.2. Theoretical modeling

Inject  and  back in the cost function and factorizeK L
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3. Structural approach (Nerlove, 1963)

3.2. Theoretical modeling

Isolate what's constant, each variable, and the residual term:
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3. Structural approach (Nerlove, 1963)

3.3. Regression expression

At this stage we can log-linearize the equation:
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3. Structural approach (Nerlove, 1963)

3.3. Regression expression

Finally we end up with this regression model:
Where coefficients are composite objects of the parameters of the structural model

But note that to test for CRS, we don't even need to derive  and  explicitely

Indeed, the null hypothesis for constant returns to scales writes

log(C) = α + β log(Y ) + γ log(pL) + δ log(pK) + ε

κ λ
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Practice

1) Import the dataset from Nerlove (1963)

library(haven)

nerlove <- read_dta("nerlove63.dta")

str(nerlove, give.attr = F)

## tibble [145 x 5] (S3: tbl_df/tbl/data.frame)

##  $ totcost: num [1:145] 0.082 0.661 0.99 0.315 0.197 ...

##  $ output : num [1:145] 2 3 4 4 5 9 11 13 13 22 ...

##  $ plabor : num [1:145] 2.09 2.05 2.05 1.83 2.12 ...

##  $ pfuel  : num [1:145] 17.9 35.1 35.1 32.2 28.6 ...

##  $ pkap   : num [1:145] 183 174 171 166 233 195 206 150 155 188 ...

2) Estimate the parameters of this regression:

3) Use linearHypothesis() from the car package to test for CRS

log(C) = α + β log(Y ) + γ log(pL) + δ log(pK) + ε
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Solution

Estimate the parameters of this regression:

summary(lm(log(totcost) ~ log(output) + log(plabor) + log(pkap), nerlove))$coefficients

##                Estimate Std. Error    t value     Pr(>|t|)

## (Intercept) -3.82905582 1.87712121 -2.0398554 4.323183e-02

## log(output)  0.70706725 0.01819229 38.8663200 3.187712e-77

## log(plabor)  0.89957689 0.28572006  3.1484555 2.003726e-03

## log(pkap)    0.06079561 0.35250457  0.1724676 8.633172e-01

Use linearHypothesis() from the car package to test for CRS

library(car)

linearHypothesis(lm(log(totcost) ~ log(output) + log(plabor) + log(pkap), nerlove),

"log(plabor) + log(pkap) = 1")

log(C) = α + β log(Y ) + γ log(pL) + δ log(pK) + ε
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Solution

linearHypothesis(lm(log(totcost) ~ log(output) + log(plabor) + log(pkap), nerlove),

"log(plabor) + log(pkap) = 1")

## Linear hypothesis test

## 

## Hypothesis:

## log(plabor)  + log(pkap) = 1

## 

## Model 1: restricted model

## Model 2: log(totcost) ~ log(output) + log(plabor) + log(pkap)

## 

##   Res.Df    RSS Df Sum of Sq      F Pr(>F)

## 1    142 24.333                           

## 2    141 24.332  1 0.0011159 0.0065  0.936

The p-value is equal to 93.6%
We cannot reject the hypothesis of constant returns to scale

 is not sufficiently far from  to reject that γ̂ + δ̂ = .96 1 γ + δ = 1
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1. Causal approach (Behaghel et al., 2015) ✔
1.1. Structure
1.2. Data
1.3. Analysis

2. Correlational approach (Chetty et al., 2014) ✔
2.1. Empirical approach
2.2. National results
2.3. Spatial variations
2.4. Correlational analysis

3. Structural approach (Nerlove, 1963) ✔
3.1. Motivation
3.2. Theoretical modeling
3.3. Regression expression

4. Wrap up!

Overview
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4. Wrap up!

Causal approach (Behaghel et al., 2015)

Applicants resumes randomly anonymized or not before being sent to employers

 captures how the difference in interview rates between the minority and the majority differs between the
treated and the control employers

summary(lm(interview ~ minority + treatment + minority*treatment, 

           data_rct, weights = weight))$coefficients

##                       Estimate Std. Error    t value     Pr(>|t|)

## (Intercept)         0.11638530 0.01630149  7.1395491 1.575140e-12

## minority           -0.02365790 0.02368346 -0.9989208 3.180243e-01

## treatment           0.06101349 0.02419977  2.5212424 1.181630e-02

## minority:treatment -0.10670915 0.03479712 -3.0666092 2.210982e-03

➜ Self-selection issue: discriminatory employers did not enter the program

Yi = α + βDi + γAni + δDi × Ani + εi

δ̂
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Relative mobility: 
Absolute mobility: 

Strong persitence in the United-
States
Large variations across commuting
zones
Intergenerational mobility
correlated with characteristics of
childhood environment

4. Wrap up!

Correlational approach (Chetty et al., 2014)

percentile(yc
i ) = α + βRRCpercentile(y

p

i ) + εi

β̂RRC

α̂ + 25 × β̂RRC

53 / 54

https://louissirugue.github.io/metrics_on_R/home.html


4. Wrap up!

Structural approach (Nerlove, 1963)

Theoretical modeling

Regression expression

Estimation

{min  C = pLL + pKK

s.t.  Y = ALλKκu
⟺ min L = pLL + pKK + μ(Y − ALλKκu)
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log(C) = α + β log(Y ) + γ log(pL) + δ log(pK) + ε ⇒ H0 : γ + δ = 1
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