

Quick reminder

Causal approach (Behaghel et al., 2015)

• Applicants resumes randomly anonymized or not before being sent to employers

$$Y_i = lpha + eta D_i + \gamma A n_i + \delta D_i imes A n_i + arepsilon_i$$

• $\hat{\delta}$ captures how the difference in interview rates between the minority and the majority differs between the treated and the control employers

→ Self-selection issue: discriminatory employers did not enter the program

Quick reminder

Correlational approach (Chetty et al., 2014)

$$ext{percentile}(y_i^c) = lpha + eta_{RRC} ext{percentile}(y_i^p) + arepsilon_i$$

A. Salt Lake City vs. Charlotte

Relative mobility: $\widehat{eta_{RRC}}$ Absolute mobility: $\widehat{lpha} + 25 imes \widehat{eta_{RRC}}$

- Strong persitence in the United-States
- Large variations across commuting zones
- Intergenerational mobility correlated with characteristics of childhood environment

#

Quick reminder

Structural approach (Nerlove, 1963)

• Theoretical modeling

$$egin{cases} \min & C = p_L L + p_K K \ ext{s.t.} & Y = A L^\lambda K^\kappa u \end{cases} \iff \min \; \mathcal{L} = p_L L + p_K K + \mu (Y - A L^\lambda K^\kappa u)$$

• Regression expression

$$\log(C) = \log\left(\left[rac{\left(rac{\lambda}{\kappa}
ight)^{\kappa} + \left(rac{\kappa}{\lambda}
ight)^{\lambda}}{A}
ight]^{rac{1}{\lambda+\kappa}}
ight) + \underbrace{rac{1}{\lambda+\kappa}}_{eta}\log(Y) + \underbrace{rac{\lambda}{\lambda+\kappa}}_{\gamma}\log(p_L) + \underbrace{rac{\kappa}{\lambda+\kappa}}_{\delta}\log(p_K) + \underbrace{\log\left(u^{rac{1}{\lambda+\kappa}}
ight)}_{arepsilon}$$

• Estimation

$$\log(C) = lpha + eta \log(Y) + \gamma \log(p_L) + \delta \log(p_K) + arepsilon \quad \Rightarrow \quad H_0: \gamma + \delta = 1$$

Today: Maps and geolocalized data

1. Geolocalized data

- 1.1. Shapefiles and rasters
- 1.2. Opening geolocalized data
- 1.3. Coordinate Reference Systems
- 1.4. Subsetting geolocalized data

2. Geographic variables

- 2.1. Import from csv
- 2.2. Zonal statistics
- 2.3. Centroids and distance

3. Wrap up!

Today: Maps and geolocalized data

1. Geolocalized data

- 1.1. Shapefiles and rasters
- 1.2. Opening geolocalized data
- 1.3. Coordinate Reference Systems
- 1.4. Subsetting geolocalized data

- → The **shapefile** is a format for storing **geographic location** and associated attribute information
 - Out-software it can seem quite complicated:
 - There are several files for a single dataset
 - Always the necessary .shp, .shx, and .dbf
 - Sometimes other files such as .prj, .cpg, etc.
 - But in-software, it is **not so far from what we're used to:**
 - There is one line per geographic entity
 - And one column per variable about these entities
 - But there is one non-standard variable: the **geometry**
 - The geometry can be:
 - **Points** at given coordinates: location of weather stations/of a phone
 - **Polylines** that link sets of points: rivers/roads
 - **Polygons** that link sets of points to form a closed shape: countries/land parcels

- For instance consider a shapefile
 - With two observations
 - And a polygon geometry

- The shapefile can also contain **attribute variable**
 - For instance the **median income** of residents of the area delimited by the polygon
 - We can plot this attribute variable using the fill aesthetic of the polygon geometry

- The **raster** is another type of format for storing geolocalized data
 - It works **like a picture**, with cells like pixels

- The **raster** is another type of format for storing geolocalized data
 - It works **like a picture**, with cells like pixels
 - o And each cell can take a given value, e.g. pollution observed from satellites

	0.5	0.45	0.45								
	0.45	0.45	0.4	0.2	0.2			1	1	0.9	0.85
0.4	0.4	0.4	0.3	0.2	0.2	0.5	0.6	0.8	1	0.85	0.8
0.3	0.3	0.3	0.3	0.2	0.2	0.5	0.7	0.9	1		
0.2	0.2	0.2	0.2	0.2	0.2	0.4	0.5	0.7	1		
		0.2	0.2	0.2	0.2	0.3	0.4	0.6			
				0.2	0.1	0.2	0.3				

- The **raster** is another type of format for storing geolocalized data
 - It works **like a picture**, with cells like pixels
 - o And each cell can take a given value, e.g. pollution observed from satellites

	0.5	0.45	0.45								
	0.45	0.45	0.4					1	1	0.9	0.85
0.4	0.4	0.4	0.3			0.5	0.6	0.8	1	0.85	0.8
0.3	0.3	0.3	0.3			0.5	0.7	0.9	1		
						0.4	0.5	0.7	1		
						0.3	0.4	0.6			
				0.2	0.1	0.2	0.3				

- Today we're gonna use this to estimate the relationship between **income and exposure to air pollution**
 - Using **raster** satellite data on pollution level

- Today we're gonna use this to estimate the relationship between **income and exposure to air pollution**
 - Using **raster** satellite data on pollution level
 - o And a **shapefile** to compute the average exposure in different location and merge it with income data

1.2. Opening geolocalized data

• We can read shapefiles in R using the read_sf() function from the sf package (data from IGN)

```
library(sf)
dep_shp <- read_sf("data/dep_shp/DEPARTEMENT.shp")</pre>
head(dep shp, 5)
## Simple feature collection with 5 features and 5 fields
  Geometry type: MULTIPOLYGON
  Dimension:
                 XΥ
                 xmin: 0.06558525 ymin: 45.23103 xmax: 7.621946 ymax: 50.0722
  Bounding box:
  Geodetic CRS: WGS 84
  # A tibble: 5 \times 6
                   NOM DEP M NOM DEP INSEE DEP INSEE REG
##
    ID
                                                                           geometry
                              <chr>
    <chr>
                   <chr>
                                     <chr>
                                                <chr>
                                                                 <MULTIPOLYGON [°]>
##
    DEPARTEM00000~ JURA
                                      39
                                                          (((5.442842 46.84592, 5.~
                              Jura
                                                27
                                                          (((0.3875418 49.77178, 0
    DEPARTEM00000~ SEINE-MA~ Seine-~ 76
                                                28
    DEPARTEM00000~ YONNE
                                                          (((3.126677 47.99127, 3.~
                              Yonne
                                      89
                                                27
    DEPARTEM00000~ LOIRE
                                                          (((3.831716 45.99944, 3.~
                              Loire
                                     42
                                                84
                                                          (((6.923645 47.95226, 6.~
## 5 DEPARTEM00000~ HAUT-RHIN Haut-R~ 68
                                                44
```


1.2. Opening geolocalized data

- We can then view the data using the geom_sf() geometry
 - It will understand that the geometry variable contains the coordinates of the polygons to be plotted

```
library(tidyverse)
ggplot(dep_shp) + geom_sf(fill = "#6794A7", color = "#014D64", alpha = .6) + theme_void()
```


1.2. Opening geolocalized data

- There are several **formats of raster** files (.tif, .nc, ...)
 - We're gonna use NetCDF satellite data on PM_{2.5} from the Atmospheric Composition Analysis Group
 - So we're gonna need the packages raster and ncdf4

```
library(raster)
select <- dplyr::select # The raster packages has an overriding select function
library(ncdf4)

pm_data <- raster("data/acag_2016.nc")
pm_data</pre>
```

```
## class : RasterLayer
## dimensions : 2300, 5000, 11500000 (nrow, ncol, ncell)
## resolution : 0.01, 0.009999999 (x, y)
## extent : -15, 35, 36, 59 (xmin, xmax, ymin, ymax)
## crs : +proj=longlat +datum=WGS84 +no_defs
## source : acag_2016.nc
## names : Hybrid.PM_2_._5...mug.m.3.
## zvar : GWRPM25
```

- As you can see NetCDFs are complex objects:
 - Not a simple table with figures
 - Note that the PM_{2.5} variable is Hybrid.PM_{2.5}...mug.m.3.

1.2. Opening geolocalized data

• We can **rename** the PM_{2.5} variable into something more convenient

```
names(pm_data) <- "pm2.5"
```

- And convert the data into a standard dataset using the rasterToPoints() function
 - It will **generate a table** with 1 row per cell
 - An x variable for the longitude, y for latitude, and pm2.5 for pollution

```
head(as_tibble(rasterToPoints(pm_data)), 5)
```

```
## # A tibble: 5 x 3
## x y pm2.5
## <dbl> <dbl> <dbl> <dbl> ## 1 -3.38 59.0 4.60
## 2 -3.37 59.0 4.60
## 3 -3.36 59.0 4.60
## 4 -3.35 59.0 4.70
## 5 -3.34 59.0 4.70
```


1.2. Opening geolocalized data

• This table format allows to easily **plot raster data** using the geom_tile geometry:

- This is gonna plot the 2,300 x 5,000 = 11,500,000 cells
 - With a color that is proportional to the value of pm2.5
 - Like the pixels of picture

Ħ

1.2. Opening geolocalized data

1.3. Coordinate Reference Systems

- You might have noticed that France does not look the same on the two graphs
 - This is because we have not **reprojected the data** yet
 - But this is the **first thing to do** when working with geolocalized data
- Right now our two maps may not be in the same CRS
 - CRS stands for Coordinate Reference System
 - It is a model of the Earth in which each location is coded using degrees
 - WGS84 is the standard CRS used by GPS, Google maps, ...
 - But it is **not suited to all applications**
- To visualize spatial data, we need to **project the surface of the globe on a plane**
 - There is **no correct way of doing that**
 - o Like you cannot flatten an orange peel without distorting it

→ There is a tradeoff between shape and scale preservation

1.3. Coordinate Reference Systems

• For instance the **Mercator projection** preserves shape but distorts scale:

1.3. Coordinate Reference Systems

• While the **Equal-Area Cylindrical projection** preserves scale but distorts shape:

1.3. Coordinate Reference Systems

• This is also the case for the **Mollweide projection**:

1.3. Coordinate Reference Systems

• But most projections are in between, like the **Robin projection**:

1.3. Coordinate Reference Systems

- The **smaller** the **area** you want to map the **less** it is a **problem**
 - While you would have a hard time flatten the whole orange peel
 - Flattening a tiny bit of orange peel wouldn't require to distort it too much
- Even though there's **no perfect projection**, some are more suited to specific regions
 - You wouldn't use the Mercator projection if you focus on the poles
- The website epsq.io allows you to **find the appropriate CRS** for the area you want to map
 - For **France**, the recommended projection is **Lambert 93**, the corresponding EPSG code is 2154
 - The most common projection is WGS84, the corresponding EPSG code is 4326
 - What is important is that all the datasets are projected the same way
- For shapefile: st_transform()

```
dep_shp <- st_transform(dep_shp, "EPSG:4326")</pre>
```

• For raster: crs()

```
crs(pm_data) <- "EPSG:4326"</pre>
```


#

1.3. Coordinate Reference Systems

• Data projected in WGS84:

1.4. Subsetting geolocalized data

• To keep only metropolitan France in the shapefile, we can filter 2-digit department codes

```
dep_shp <- dep_shp %>% filter(nchar(INSEE_DEP) == 2)
```


1.4. Subsetting geolocalized data

• Then, we can drop from the raster everything outside the longitude/latitude frame of our shapefile

```
pm_data <- crop(pm_data, extent(dep_shp))</pre>
```


1.4. Subsetting geolocalized data

• We can then replace everything that is not in a polygon of the shapefile by missing values

```
pm_data <- mask(pm_data, dep_shp)</pre>
```


1.4. Subsetting geolocalized data

• The two datasets can now be overlaid:

```
ggplot() +
  geom_tile(data = as_tibble(rasterToPoints(pm_data)), aes(x = x, y = y, fill = pm2.5)) +
  geom_sf(data = dep_shp, fill = NA, color = alpha("grey20", .6)) +
  scale_fill_viridis(option = "A", direction = -1) + theme_void()
```


1.4. Subsetting geolocalized data

• We do not see much variation... Let's take a look at the PM_{2.5} distribution

```
subset_data <- as_tibble(rasterToPoints(pm_data))

ggplot(subset_data, aes(x = pm2.5)) +
   geom_density(fill = "#6794A7", color = "#014D64", alpha = .6)</pre>
```


- There are few very high and very low values that stretch the scale
 - → To better visualize the variations, we can discretize the variable into deciles

1.4. Subsetting geolocalized data

- To convert a continuous into deciles we should:
 - 1. Arrange the values in ascending order
 - 2. Compute the ratio of their index over N to get something $\in (0;1]$
 - 3. Multiply by the desired number of quantiles and take the ceiling
 - 4. Set as factor so that R does not interpret it as continuous

```
subset_data <- subset_data %>%
  arrange(pm2.5) %>%
  mutate(decile = as.factor(ceiling(10 * row_number()/n())))
```

And plot the deciles instead of the continuous values

```
ggplot() +
  geom_tile(data = subset_data, aes(x = x, y = y, fill = decile)) +
  geom_sf(data = dep_shp, fill = NA, color = alpha("grey20", .6)) +
  scale_fill_viridis_d(option = "A", direction = -1) + theme_void()
```


1.4. Subsetting geolocalized data

Practice

First, make sure we're on the same page

```
# Load packages
library(tidyverse)
library(viridis)
library(sf)
library(raster)
select <- dplyr::select</pre>
library(ncdf4)
# Import data
dep_shp <- read_sf("data/dep_shp/DEPARTEMENT.shp")</pre>
pm_data <- raster("data/acag_2016.nc")</pre>
# Reproject data
dep_shp <- st_set_crs(dep_shp, "EPSG:4326")</pre>
crs(pm_data) <- "EPSG:4326"</pre>
# Rename PM 2.5 layer
names(pm_data) <- "pm2.5"</pre>
```

Practice

1) Filter only the Île-de-France region both in the shapefile and the raster

Hint: The Île-de-France geographic code is 11

2) Plot the PM_{2.5} concentration in Île-de-France and overlay the department shapefile

You've got 8 minutes!

Solution

1) Filter only the Île-de-France region both in the shapefile and the raster

```
# Filter only departments of Île-de-France in shapefile
dep_shp <- dep_shp %>% filter(INSEE_REG == 11)

# Drop fromraster everything outside the lon/lat frame of the shapefile
pm_data <- crop(pm_data, extent(dep_shp))

# Replace everything that is not in a polygon of the shapefile by NA
pm_data <- mask(pm_data, dep_shp)</pre>
```

2) Plot the PM_{2.5} concentration in Île-de-France and overlay the department shapefile

```
ggplot() +
    # Plot the raster
geom_tile(data = as_tibble(rasterToPoints(pm_data)), aes(x = x, y = y, fill = pm2.5)) +
    # Plot the shapefile
geom_sf(data = dep_shp, fill = NA) +
    # Custom scale
scale_fill_viridis(option = "B") + theme_void()
```

Solution

Overview

1. Geolocalized data ✓

- 1.1. Shapefiles and rasters
- 1.2. Opening geolocalized data
- 1.3. Coordinate Reference Systems
- 1.4. Subsetting geolocalized data

2. Geographic variables

- 2.1. Import from csv
- 2.2. Zonal statistics
- 2.3. Centroids and distance

3. Wrap up!

Overview

1. Geolocalized data ✓

- 1.1. Shapefiles and rasters
- 1.2. Opening geolocalized data
- 1.3. Coordinate Reference Systems
- 1.4. Subsetting geolocalized data

2. Geographic variables

- 2.1. Import from csv
- 2.2. Zonal statistics
- 2.3. Centroids and distance

2.1. Import from csv

- Geographic variables can simply be stored in csv:
 - The Gini index of inequality of countries
 - The unemployment rate of departments
 - The number of inhabitants of cities
 - 0 ...
- In this case you can simply
 - Import the csv data you need
 - Join it to the shapefile as you would do with any other data
- → Let's study the relationship between income and exposure to air pollution at the city level in Île-de-France
- We need:
 - 1. To import the shapefile of cities in Île-de-France
 - 2. To import and join median income by city

2.1. Import from csv

• Import shapefile of cities in Île-de-France and project it in WGS84

```
idf_shp <- read_sf("data/idf_shp/idf.shp")</pre>
idf_shp <- st_set_crs(idf_shp, "EPSG:4326")</pre>
head(idf shp, 5)
## Simple feature collection with 5 features and 5 fields
## Geometry type: MULTIPOLYGON
## Dimension:
                 XΥ
                 xmin: 1.643507 ymin: 48.36067 xmax: 2.365918 ymax: 49.17332
  Bounding box:
## Geodetic CRS: WGS 84
## # A tibble: 5 x 6
    NOM COM INSEE COM INSEE DEP INSEE REG POPULATION
##
                                                                          geometry
    <chr>
               <chr>
                          <chr>
                                    <chr>
                                                                <MULTIPOLYGON [°]>
##
                                                   <int>
## 1 Haute-Isle 95301
                                                     278 (((1.691893 49.07523, 1.~
                          95
                                    11
## 2 Ambleville 95011
                          95
                                    11
                                                     372 (((1.691683 49.12863, 1.~
    Chalou-Mou~ 91131
                                                     431 (((2.043785 48.36067, 2.~
                          91
                                    11
  4 Morsang-su~ 91434
                                                   20909 (((2.36231 48.64807, 2.3~
                          91
                                    11
## 5 Vienne-en-~ 95656
                                                     416 (((1.74087 49.07267, 1.7~
                          95
                                    11
```


2.1. Import from csv

- Join csv data on median income by city and plot together with department shapefile
 - We shall make sure that the **join variable(s)** have the **same name and class**

• Same name but not same class

```
idf_shp <- idf_shp %>% mutate(INSEE_COM = as.numeric(INSEE_COM)) %>% left_join(insee_data)

ggplot() + geom_sf(data = idf_shp, aes(fill = MED16), color = alpha("grey20", .4)) +
    geom_sf(data = dep_shp, fill = NA, color = alpha("grey20", .6), size = 1.2) +
    scale_fill_viridis(option = "B") + theme_void()
```


2.1. Import from csv

2.2. Zonal statistics

• Right now we have pollution at the cell level in our raster

2.2. Zonal statistics

• And a shapefile delimiting the cities in which we want to know the pollution level

2.2. Zonal statistics

- This is the principle of **zonal statistics**:
 - Compute statistics on areas delimited by a shapefile from values of a raster
 - \circ We want the average PM_{2.5} value of the cells that fall within the municipality geometry
 - With our shapefile and raster that cover the same area and are projected the same way
- In R zonal statistics can be computed with the function **extract()**
 - **x:** the data containing the values to compute statistics from
 - **y:** the data delimiting the zones in which to compute statistics
 - **FUN:** the statistic to compute (min, max, median, mean, ...)

```
idf_shp <- idf_shp %>% mutate(pm2.5 = extract(x = pm_data, y = ., fun = mean))

ggplot() +
   geom_sf(data = idf_shp, aes(fill = pm2.5), color = alpha("grey20", .4)) +
   geom_sf(data = dep_shp, fill = NA, color = alpha("grey20", .6), size = 1.2) +
   scale_fill_viridis(option = "B") + theme_void()
```


2.2. Zonal statistics

2.2. Zonal statistics

- We now have in the same dataset:
 - Average exposure to PM_{2.5}
 - Median income
 - Both at the city level

→ Let's do the regression

```
##
              Dependent variable:
##
##
##
                   pm2.5
## MED16
                  -0.051***
                   (0.007)
##
##
 Constant
                 13.037***
                  (0.183)
##
##
 Observations 1,250
                   0.040
```


2.3. Centroids and distances

Results indicate that at the city level in \hat{I} le-de-France, an increase of 1,000 euros is associated with a reduction of 0.05 $\mu g/m^3$ in the concentration of PM_{2.5}, ceteris paribus

- But could this **effect** just be due to the **distance to Paris?**
 - Maybe richer individuals tend to live away from the urban center
 - And thus to be less exposed to pollution
- We need to **control** for the distance to Paris
 - To do so we can find the location of the **centroid** of each municipality with st_centroid()
 - It corresponds to the arithmetic mean position of all the points in the polygon

```
idf_shp <- idf_shp %>%
  mutate(centroid = st_centroid(geometry))

ggplot() +
  geom_sf(data = idf_shp$geometry, fill = "#6794A7", color = "#014D64", alpha = .6) +
  geom_sf(data = idf_shp$centroid, color = "#014D64") + theme_void()
```


2.3. Centroids and distances

2.3. Centroids and distances

- Note that the centroid of a polygon can be outside the polygon
 - Take for instance the municipality Les Ulis:

2.3. Centroids and distances

• To compute distances we should first convert the centroid variable into a longitude and a latitude variable

```
idf_shp <- idf_shp %>%
  group_by(INSEE_COM) %>%
  mutate(cent_lon = unlist(centroid)[1], cent_lat = unlist(centroid)[2])
```

• And store the coordinates of Paris

```
paris <- idf_shp %>%
  filter(NOM_COM == "Paris") %>%
  select(cent_lon, cent_lat) %>% st_drop_geometry() # Specific function to drop geometry
paris
```

```
## # A tibble: 1 x 2
## cent_lon cent_lat
## * <dbl> <dbl>
## 1 2.34 48.9
```


2.3. Centroids and distances

• We can now compute the distance between each centroid and that of Paris using geodist_vec()

• We can plot this new variable

```
ggplot() +
  geom_sf(data = idf_shp, aes(fill = dist_paris), color = alpha("grey20", .4)) +
  geom_sf(data = dep_shp, fill = NA, color = alpha("grey20", .6), size = 1.2) +
  scale_fill_viridis(option = "B") + theme_void()
```

• And add it in the regression

```
stargazer(lm(pm2.5 ~ MED16 + dist_paris, idf_shp), type = "text", keep.stat = c("n", "rsq"))
```


2.3. Centroids and distances

2.3. Centroids and distances

```
##
##
             Dependent variable:
##
##
                  pm2.5
## MFD16
               -0.092***
##
                 (0.005)
##
 dist paris
                -0.041***
##
                 (0.001)
##
 Constant
                15.749***
##
                 (0.131)
##
## Observations 1,250
## R2
                  0.620
```

- Once controlling for distance to Paris, the coefficients associated with median income is even more negative
 - Distance to Paris has opposite relationships with pollution and median income
 - Richer municipalities tend to be closer to Paris
 - But also to be less polluted than poorer municipalities
- In Île-de-France the relationship between exposure to PM_{2.5} and median income (in thousand euros) is even stronger than with distance to Paris (in km)
 - Both coefficients are significant at 99% confidence level

Overview

1. Geolocalized data ✓

- 1.1. Shapefiles and rasters
- 1.2. Opening geolocalized data
- 1.3. Coordinate Reference Systems
- 1.4. Subsetting geolocalized data

2. Geographic variables ✓

- 2.1. Import from csv
- 2.2. Zonal statistics
- 2.3. Centroids and distance

3. Wrap up!

3. Wrap up!

Shapefiles and rasters

Two main types of geolocalized datasets:

Shapefiles

- One row per entity/one column per variable
- A geometry variable with the coordinates of the points/polylines/polygons

Median income — High — Low

Rasters

- Works like a picture, with cells like pixels
- And each cell can take a given value, e.g. pollution observed from satellites

Coordinates Reference Systems

- A Coordinate Reference System (CRS) is a model of the Earth in which each location is coded using degrees
 - It allows to **project the surface of the globe on a plane**
 - But there is a **tradeoff** between preserving:

Shape (like the Mercator projection)

Scale (like the Equal-Area Cylindrical projection)

- Most projections are somewhere in between
- For France: Lambert 93 projection (EPSG:2154)

→ First thing to do: **reprojection**

Operations on geolocalized data

Zonal statistics

- Computing statistics on areas delimited by a shapefile from values of a raster
 - Project shapefile and raster the same way
 - Compute the mean/max/... of cell values

Centroids

- The centroid is the arithmetic mean position of all the points in the polygon
 - To compute distances between polygons
 - A centroid is not always within its polygon

