Introductory Econometrics

Lecture 18

Louis SIRUGUE

CPES 2 - Spring 2023

Today: Refresher on Introductory Econometrics

1. Regressions with continuous variables

- 1.1. Estimation
- 1.2. Inference

2. Regressions with discrete variables

- 2.1. Binary dependent variable2.2. Binary independent variable
- 2.3. Categorical independent variable

3. Controls and interactions

4. Interpretation

Today: Refresher on Introductory Econometrics

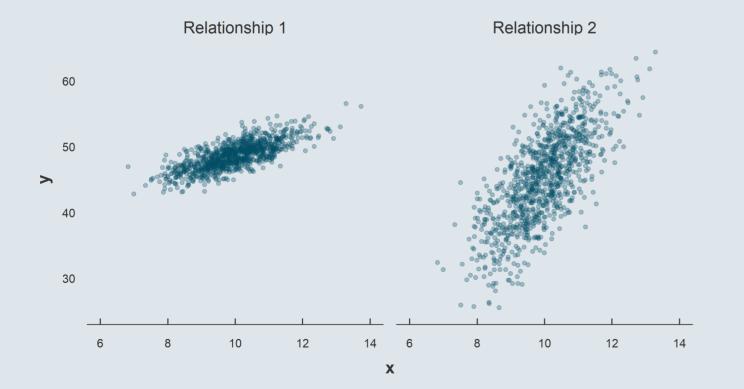
1. Regressions with continuous variables

1.1. Estimation 1.2. Inference

3 / 43

1.1. Estimation

• Consider these two relationships:

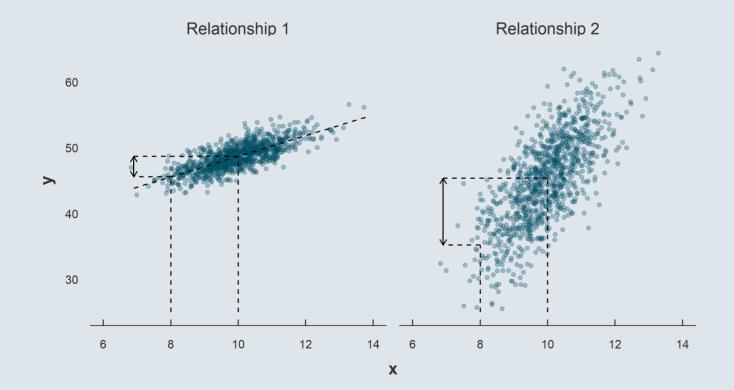


- → One is less noisy but flatter
- → One is noisier but steeper

Both have a correlation of .75

1.1. Estimation

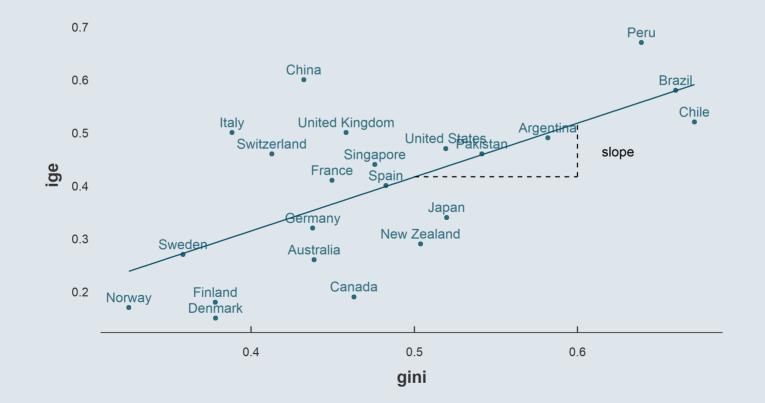
• Consider these two relationships:



But a given increase in x is not associated with a same increase in y!

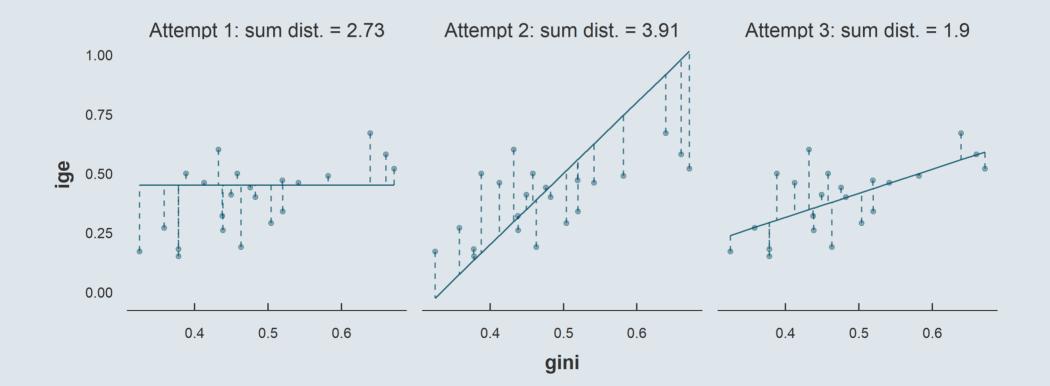
1.1. Estimation

- The idea of a regression is to find the **line** that **fits** the data the **best**
 - Such that its slope can indicate how we expect y to change if we increase x by 1 unit

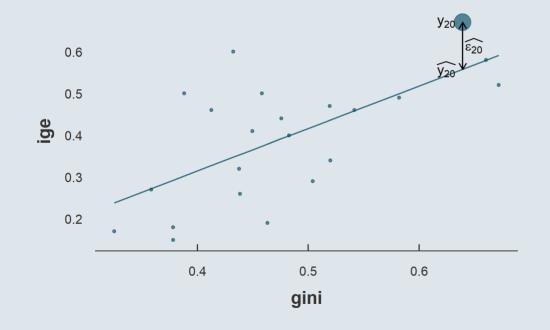


1.1. Estimation

• To do so we should minimize the distance between each point and the line



1.1. Estimation

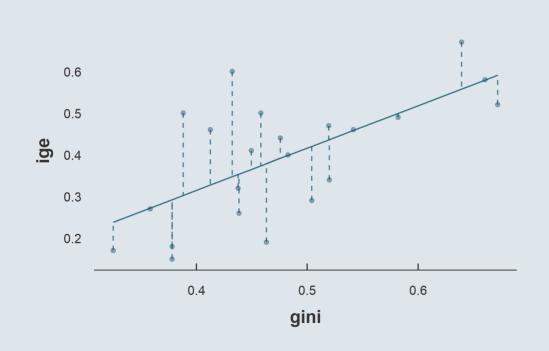


Take for instance the 20th observation: Peru

And consider the following notations:

- We denote y_i the ige of the $i^{
 m th}$ country
- We denote x_i the gini of the $i^{
 m th}$ country
- We denote $\widehat{y_i}$ the value of the y coordinate of our line when $x=x_i$
- → The distance between the $i^{
 m th}$ y value and the line is thus $y_i \widehat{y_i}$
 - We label that distance $\widehat{\varepsilon_i}$

1.1. Estimation



• Because $\hat{\varepsilon}_i$ is the value of the distance between a point y_i and its corresponding value on the line \hat{y}_i we can write:

$$y_i = \widehat{y_i} + \widehat{arepsilon_i}$$

• And because $\widehat{y_i}$ is a straight line, it can be expressed as

$$\widehat{y_i} = \hat{lpha} + \hat{eta} x_i$$

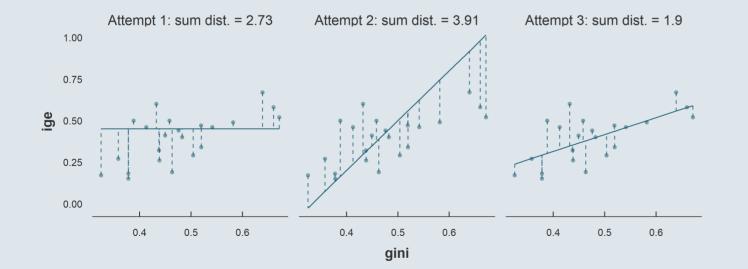
- Where:
 - $\circ \ \hat{lpha}$ is the y-intercept
 - $\circ \hat{\beta}$ is the slope
 - $\circ~$ Both are estimations of the actual α and β of the unknown DGP

1.1. Estimation

• Combining these two definitions yields the equation:

$$y_i = \hat{lpha} + \hat{eta} x_i + \widehat{arepsilon_i} iggl\{ egin{array}{ll} y_i = \widehat{y_i} + \widehat{arepsilon_i} & ext{Definition of distance} \ \widehat{y_i} = \hat{lpha} + \hat{eta} x_i & ext{Definition of the line} \end{array} iggr\}$$

• Depending on the values of \hat{lpha} and \hat{eta} , the value of every $\widehat{arepsilon_i}$ will change



Attempt 1: $\hat{\alpha}$ is too high and $\hat{\beta}$ is too low $\rightarrow \hat{\varepsilon}_i$ are large **Attempt 2:** $\hat{\alpha}$ is too low and $\hat{\beta}$ is too high $\rightarrow \hat{\varepsilon}_i$ are large **Attempt 3:** $\hat{\alpha}$ and $\hat{\beta}$ seem appropriate $\rightarrow \hat{\varepsilon}_i$ are low

1.1. Estimation

• We want to find the values of $\hat{\alpha}$ and $\hat{\beta}$ that minimize the overall distance between the points and the line

$$\min_{\hat{lpha},\hat{eta}}\sum_{i=1}^n \widehat{arepsilon_i}^2$$

- \circ Note that we square $\widehat{\varepsilon_i}$ to avoid that its positive and negative values compensate
- This method is what we call **Ordinary Least Squares (OLS)**
- If we replace $\widehat{arepsilon_i}$ with $y_i \hat{lpha} \hat{eta} x_i$

• We can solve the minimization problem (see Lecture 7) to obtain:

$$\hat{eta} = rac{ ext{Cov}(x_i,y_i)}{ ext{Var}(x_i)} \qquad ; \qquad \hat{lpha} = ar{y} - \hat{eta} imes ar{x}$$

Vocabulary

1

• This equation we're working on is called a **regression model**

$$y_i = lpha + eta x_i + arepsilon_i$$

- $\circ~$ We say that we regress y on x to find the coefficients \hat{lpha} and \hat{eta} that characterize the regression line
- We often call $\hat{\alpha}$ and $\hat{\beta}$ *parameters* of the regression because it is what we tune to fit our model to the data
- We also have different names for the x and y variables
 - *y* is called the *dependent* or *explained* variable
 - $\circ x$ is called the *independent* or *explanatory* variable
- We call $\hat{\varepsilon}_i$ the **residuals** because it is what is left after we fitted the data the best we could
- And $\hat{y_i} = \hat{lpha} + \hat{eta} x_i$, i.e., the value on the regression line for a given x_i are called the **fitted values**

1.2. Inference

- Inference refers to the fact of being able to **conclude** something from our estimation
 - The $\hat{\beta}$ from our sample is actually an **estimation** of the unobserved β of the underlying population
 - $\circ~$ We would like to know how reliable \hat{eta} is, **how confident we are** in its estimation
 - $\circ~$ The first step of inference is to compute the **standard error** of \hat{eta}

$$ext{se}(\hat{eta}) = \sqrt{\widehat{ ext{Var}}(\hat{eta})} = \sqrt{rac{\sum_{i=1}^n \hat{arepsilon_i}^2}{(n-\# ext{parameters})\sum_{i=1}^n (x_i-ar{x})^2}}$$

- Notice that the variance, and thus the standard error of our estimate:
 - Decreases as our sample gets bigger
 - $\circ~$ Gets larger if the points are further away from the regression line on average for a given variance of x

1.2. Inference

- The magnitude of the standard error gives an indication of the **precision** of our estimate:
 - The larger the estimate relative to its standard error, the more precise the estimate
- But standard errors are not easily interpretable by themselves
 - A more direct way to get a sense of the precision for inference is to construct a **confidence interval**

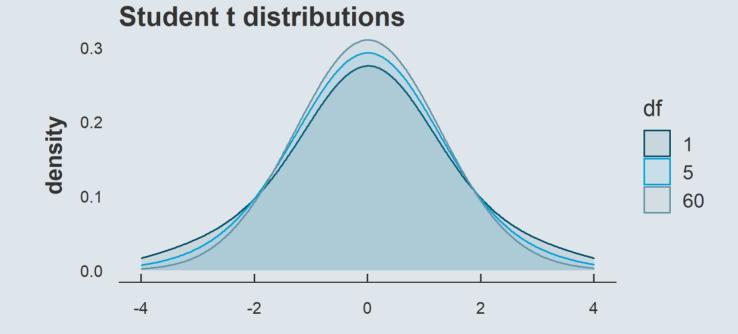
→ Instead of saying that our estimation $\hat{\beta}$ is equal to 1.02, we would like to say that we are 95% sure that the actual β lies between two given values

• To obtain a confidence interval we can use the fact that under specific conditions (that you're gonna see next year) it is possible to derive how this object is distributed:

$$\hat{t} \equiv rac{\hat{eta} - eta}{\mathrm{se}(\hat{eta})}$$

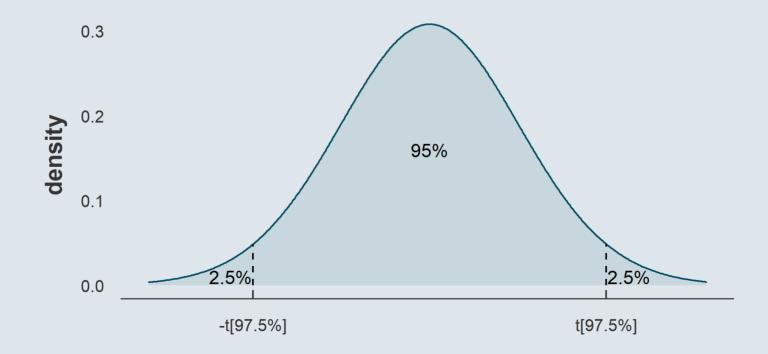
1.2. Inference

• Theory shows that $\hat{t} \equiv \frac{\hat{\beta} - \beta}{\operatorname{se}(\hat{\beta})}$ follows a Student t distribution whose number of degrees of freedom is equal to n (in our case 22 countries) minus the number of parameters estimated in the model (in our case 2: α and β)



1.2. Inference

- Denote $t_{97.5\%}$ the value such that 97.5% of the distribution is below that value
 - $\circ\;$ Then 95% of the distribution lies between $-t_{97.5\%}$ and $t_{97.5\%}$



1.2. Inference

• Because we know that $\hat{t} \equiv \frac{\hat{\beta} - \beta}{\operatorname{se}(\hat{\beta})}$ follows this distribution, we know that it has a 95% chance to fall within the two values $-t_{97.5\%}$ and $t_{97.5\%}$

$$\Pr\left[-t_{97.5\%} \leq rac{\hateta - eta}{\mathrm{se}(\hateta)} \leq t_{97.5\%}
ight] = 95\%$$

• Rearranging the terms yields:

$$\Pr\left[\hat{eta} - t_{97.5\%} imes \operatorname{se}(\hat{eta}) \leq eta \leq \hat{eta} + t_{97.5\%} imes \operatorname{se}(\hat{eta})
ight] = 95\%$$

• Thus, we can say that there is a 95% chance for eta to be within

$$\hat{eta} \pm t_{97.5\%} imes \mathrm{se}(\hat{eta})$$

• To get $t_{97.5\%}$ with 20 df:

qt(.975, 20)

1.2. Inference

- **Confidence intervals** are very effective to get a sense of the precision of our estimates and of the **range of** values the true parameters could reasonably take
- But the *p-value* is what we tend to ultimately focus on, it is the % chance that our estimation of the true parameter is different from a given value (generally 0) just coincidentally
- Confidence intervals and p-values are tightly linked
 - If there is a 4% chance that a parameter equal to 2 is different from 0, I know that the 95% confidence interval will start above 0 but quite close, and stop a bit before 4
 - If a 95% confidence interval is bounded by 4 and 5, I know the the p-value will be way below 5%
- But these two indicators are **complementary** to easily get the full picture:
 - With a p-value we can easily know how sure we are that the parameter is different from a given value, but it is difficult to get a sense of the set of values the parameters can reasonably take
 - With the confidence interval it is the opposite

1.2. Inference

- P-val. computation: The principle is the same as for standard errors but the reasoning is reversed
 - For *confidence intervals*: we want to know among which values the parameter has a given percentage chance to fall into
 - For *p-value*: we want to know with which percentage chance 0 is out of the set of values that the parameter could reasonably take
- Vocabulary: We talk about significance level
 - $\circ~$ When $m P-value \leq .05$, we say that the estimate is significant(ly different from 0) at the 5% level
 - When the p-value is greater than a given threshold of acceptability, we say that the estimate is not significant
- In practice: Usually in Economics we use the 5% threshold
 - But this is arbitrary, in other fields the benchmark p-value is different
 - $\circ~$ With this threshold we're wrong once in 20 times

Overview

1. Regressions with continuous variables \checkmark

- 1.1. Estimation
- 1.2. Inference

2. Regressions with discrete variables

- 2.1. Binary dependent variable
- 2.2. Binary independent variable
- 2.3. Categorical independent variable

3. Controls and interactions

4. Interpretation

Overview

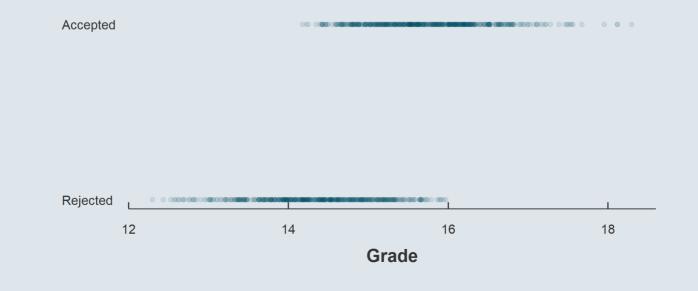
1. Regressions with continuous variables \checkmark

- 1.1. Estimation
- 1.2. Inference

2. Regressions with discrete variables

- 2.1. Binary dependent variable
- 2.2. Binary independent variable
- 2.3. Categorical independent variable

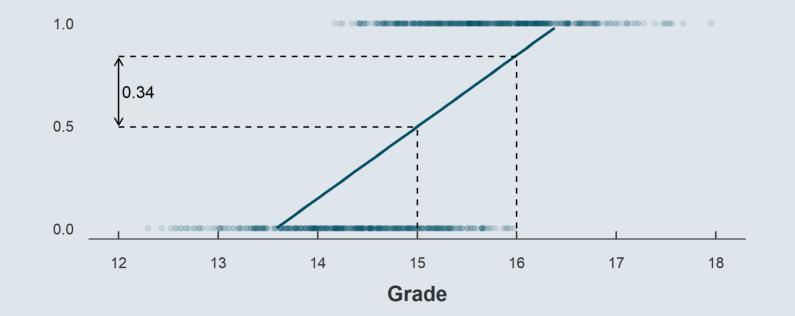
- So far we've considered only continuous variables in our regression models
 - But what if our dependent variable is discrete?
- Consider that we have data on candidates to a job:
 - Their *Baccalauréat* grade (/20)
 - Whether they got accepted



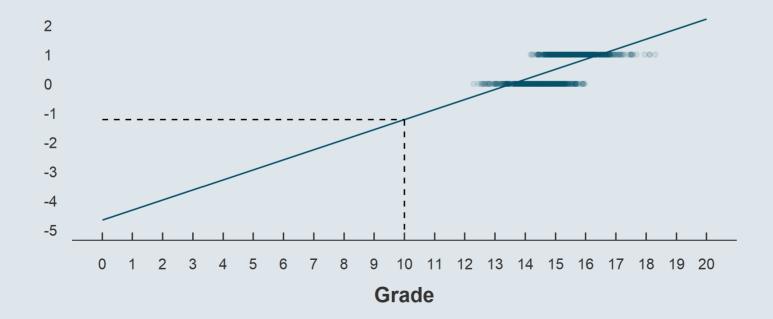
- Even if the outcome variable is binary we can regress it on the grade variable
 - We can convert it into a **dummy** variable, a variable taking either the value 0 or 1
 - Here consider a dummy variable taking the value 1 if the person was accepted

$$1\{y_i = ext{Accepted}\} = \hat{lpha} + \hat{eta} imes ext{Grade}_i + \hat{arepsilon_i}$$

- The fitted values can be viewed as the probability to be accepted for a given grade
 - The slope is thus by how much the probability of being accepted would increase on expectation for a 1 point increase in the grade
 - That's why we call OLS regression models with a binary outcome *Linear Probability Models*



- But with an LPM you can end up with 'probabilities' that are lower than 0 and greater than 1
 - Interpretation is only valid for values of x sufficiently close to the mean
 - Keep that in mind and be careful when interpreting the results of an LPM



2.2. Binary independent variable

- Now consider that we individual data containing:
 - The sex
 - The height (centimeters)
- So instead of
 - having a binary dependent variable :

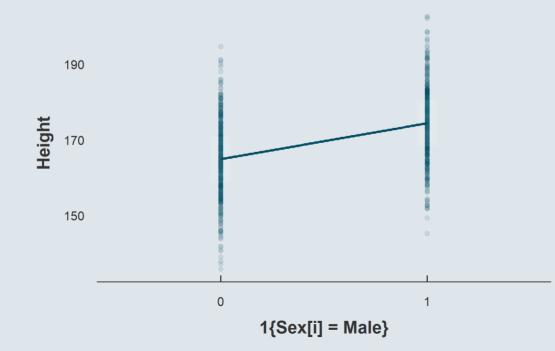
$$1\{y_i = ext{Accepted}\} = \hat{lpha} + \hat{eta} imes ext{Grade}_i + \hat{arepsilon_i}$$

• we have a binary independent variable

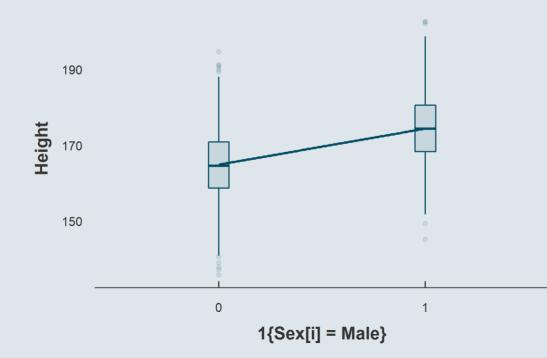
$$ext{Height}_i = \hat{lpha} + \hat{eta} imes 1\{x_i = ext{Male}\} + \hat{arepsilon_i}$$

 \rightarrow How to interpret the coefficient $\hat{\beta}$ from this regression?

- If the sex variable was continuous it would be the expected increase in height for a '1 unit increase' in sex
 - Here the '1 unit increase' is switching from 0 to 1, i.e. from female to male
 - Here is the traditionnal scatter plot representation



- Replacing the point geometry by the corresponding boxplots:
 - What this '1 unit increase' corresponds to should be clearer
 - The coefficient $\hat{\beta}$ is actually the difference between the average height for males and females



2.2. Binary independent variable

##

• Let's have a look at the regression results and at the summary statistics of both distributions:

##				
##	================		============	
##		Depe	endent var	iable:
##				
##			Height	
##				
##	SexMale		9.5***	
##			(0.6)	
##				
##	Constant		165.0***	
##			(0.4)	
##				
##				
##	Observations		1,000	
##	R2		0.2	
##	=================	========	=============	==========
##	Note:	*p<0.1;	**p<0.05;	***p<0.01

Height summary statistics by sex

Sex	Min	Q1	Med	Mean	Q3	Мах
Female	135.9	158.8	164.6	165.0	170.9	194.7
Male	145.2	168.3	174.4	174.5	180.6	202.6

→ The $\hat{\alpha}$ coefficient is equal to the expected value of y when x = 0, i.e., to the average height for females

→ The $\hat{\beta}$ coefficient is equal to expected increase in y when going from x = 0 to x = 1, i.e., to the difference between male and female average height

2.2. Binary independent variable

• Let's think of it in terms of a regression model:

$$\mathrm{Height}_i = \hat{lpha} + \hat{eta} imes 1\{x_i = \mathrm{Male}\} + \hat{arepsilon_i}$$

• We now have $\hat{\alpha}$ and $\hat{\beta}$:

$$\mathrm{Height}_i = 165.0 + 9.8 imes 1\{x_i = \mathrm{Male}\} + \hat{arepsilon_i}$$

• The fitted values write:

$$\widehat{\mathrm{Height}}_i = 165.0 + 9.8 imes 1\{x_i = \mathrm{Male}\}$$

• When the dummy equals 0 (females):

 $\widehat{ ext{Height}}_i = 165.0 + 9.8 imes 0 \ = 165.0 = \overline{ ext{Height}_{[x_i = ext{Female}]}}$

• When the dummy equals 1 (males):

$$\widehat{ ext{Height}}_i = 165.0 + 9.8 imes 1 \ = 174.8 = \overline{ ext{Height}_{[x_i = ext{Male}]}}$$

2.3. Categorical independent variable

- So far we've been working with binary categorical variables:
 - Accepted vs. Rejected, Male vs. Female
 - But what about discrete variables with more than two categories?
- Take for instance the race variable:

Distribution of the Race
categorical variableRaceAsianBlackOtherWhiteN45286835242250551

→ How can we use this variable as an independent variable in our regression framework?

2.3. Categorical independent variable

• Just as we converted our 2-category variable into 1 dummy variable, we can convert an n-category variable into n - 1 dummy variables:

Sex	Male	Race	Black	Other	White
Female	0	Asian	0	0	0
Female	0	Asian	0	0	0
Female	0	Black	1	0	0
Female	0	Black	1	0	0
Male	1	Other	0	1	0
Male	1	Other	0	1	0
Male	1	White	0	0	1
Male	1	White	0	0	1

→ But why do we omit one category every time?

- Females are observations for which Male equals 0
- Asians are observations for which Black, Other, and White each equals 0
- → Females and Asians are *reference categories*
 - The coefficient associated with the Male dummy was interpreted *relative* to females
 - The coefficients associated with the Black, Other, and White dummies will be interpreted *relative* to Asians

2.3. Categorical independent variable

• Thus, regressing earnings on the race categorical variable amounts to estimate the equation:

 $\text{Earnings}_i = \hat{\alpha} + \hat{\beta}_1 1\{\text{Race}_i = \text{Black}\} + \hat{\beta}_2 1\{\text{Race}_i = \text{Other}\} + \hat{\beta}_3 1\{\text{Race}_i = \text{White}\} + \hat{\varepsilon_i}$

• And if we compare the regression results to the average earnings by group:

##		Estimate	Std. Error	t value	Pr(> t)
##	(Intercept)	77990.78	1149.552	67.84449	0.000000e+00
##	RaceBlack	-27413.29	1482.197	-18.49503	3.571079e-76
##	RaceOther	-28512.08	1947.305	-14.64181	1.819073e-48
##	RaceWhite	-15110.29	1199.933	-12.59262	2.559272e-36

summary(lm(Earnings ~ Race, asec_2020))\$coefficients

- $\circ \,\, lpha$ is still the average earnings for the reference category
- coefficient are still *relative* to the reference category

Mean earnings by race		
Race	Mean earnings	
Asian	77990.78	
Black	50577.49	
Other	49478.70	
White	62880.49	

2.3. Categorical independent variable

• As you can see from the previous regression results, by default R sorts categories by alphabetical order:

##		Estimate	Std. Error	t value	Pr(> t)
##	(Intercept)	77990.78	1149.552	67.84449	0.00000e+00
##	RaceBlack	-27413.29	1482.197	-18.49503	3.571079e-76
##	RaceOther	-28512.08	1947.305	-14.64181	1.819073e-48
##	RaceWhite	-15110.29	1199.933	-12.59262	2.559272e-36

- But oftentimes we would prefer the reference category to be the majority group
 - In R we can use the relevel() function to change the reference category of a factor

summary(lm(Earnings ~ relevel(as.factor(Race), "White"), asec_2020))\$coefficients[, c(1, 2, 4)]

##	Estimate Std. Error Pr(> ⁻	t)
## (Intercept)	62880.49 344.0464 0.000000e	+00
<pre>## relevel(as.factor(Race), "White</pre>	e")Asian 15110.29 1199.9326 2.559272e	-36
<pre>## relevel(as.factor(Race), "White</pre>	e")Black -12302.99 996.8981 5.947231e	-35
<pre>## relevel(as.factor(Race), "White</pre>	e")Other -13401.79 1609.0045 8.294160e	-17

Overview

1. Regressions with continuous variables \checkmark

- 1.1. Estimation
- 1.2. Inference

2. Regressions with discrete variables \checkmark

- 2.1. Binary dependent variable
- 2.2. Binary independent variable
- 2.3. Categorical independent variable

3. Controls and interactions

4. Interpretation

35 / 43

Overview

1. Regressions with continuous variables \checkmark

- 1.1. Estimation
- 1.2. Inference

2. Regressions with discrete variables \checkmark

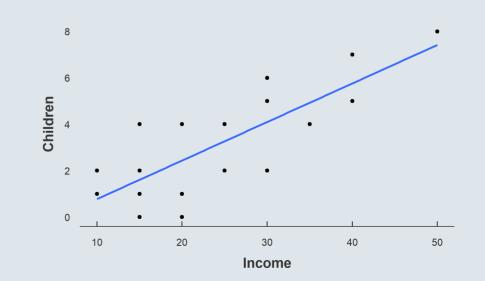
- 2.1. Binary dependent variable
- 2.2. Binary independent variable
- 2.3. Categorical independent variable

3. Controls and interactions

- We can add a third variable z in the regression for two reasons:
 - **Controlling for z** allows to **net out** the relationship between x and y from how they both relate to **z**
 - Interacting x with z allows to estimate how the relationship between x and y varies with z
- Consider the following fictitious dataset at the household level
 - Household annual income
 - Number of children in the household
 - Parents' education level

```
data <- read.csv("household_data.csv")
head(data, 7) # fictitious data</pre>
```

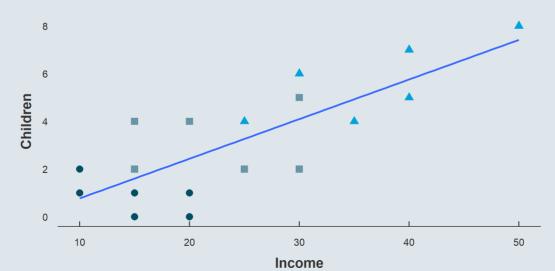
##		Income	Children		Education
##	1	20	1	<	Highschool
##	2	10	1	<	Highschool
##	3	10	2	<	Highschool
##	4	15	Θ	<	Highschool
##	5	15	1	<	Highschool
##	6	20	Θ	<	Highschool
##	7	15	2		Highschool



• There's a clear positive relationship

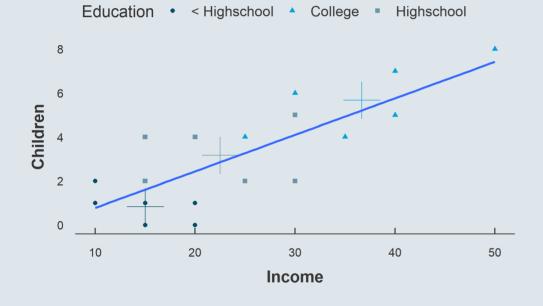
##		Estimate	Pr(> t)
##	(Intercept)	-0.885	0.319
##	Income	0.166	0.000

- But what if this relationship was driven by a third variable?
- Maybe it's just that more educated parents tend to earn more and to have more children

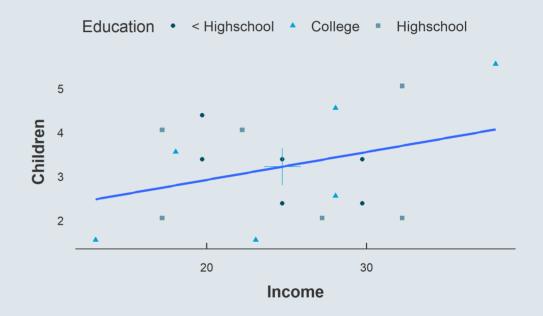


Education • < Highschool ▲ College ■ Highschool

Controlling for education does the same to the slope as recentering the graph with respect to education
 In that way, when moving along the x axis, z does not increase but remains constant



- The crosses are located at the average x and y values for each education group
 - Controlling for education shifts x and y by group such that crosses superimpose



##		Estimate	Pr(> t)
##	(Intercept)	-0.120	0.892
##	Income	0.064	0.196
##	EducationCollege	3.456	0.015
##	EducationHighschool	1.856	0.037

• Here when we **do not control** for education:

$$Children_i = lpha + eta Income_i + arepsilon_i$$

- We estimate the overall relationship (here, significantly positive)
- But when we **control** for education:

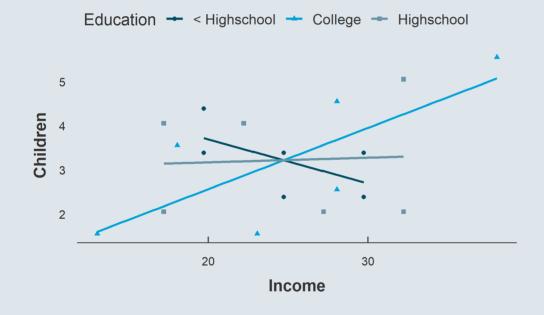
 $Children_i = lpha + \beta Income_i + \gamma_1 1 \{Education_i = ext{Highschool}\} + \gamma_2 1 \{Education_i = ext{College}\} + arepsilon_i$

- We estimate the relationship net of the effect of education (here, not significant)
- Interacting the two variables is going one step further:

 $Children_i = lpha + eta Income_i + \gamma_1 1\{Education_i = ext{Highschool}\} + \gamma_2 1\{Education_i = ext{College}\} + \delta_1 Income_i imes 1\{Education_i = ext{Highschool}\} + \delta_2 Income_i imes 1\{Education_i = ext{College}\} + arepsilon_i$

- It is not simply taking into account the fact that education may plays a role
- \circ It estimates by how much the relationship between x and y varies according to z

• Interacting income with education provides one slope per education group:



##		Estimate	Pr(> t)
##	(Intercept)	2.333	0.225
##	Income	-0.100	0.411
##	EducationCollege	-1.768	0.553
##	EducationHighschool	0.596	0.819
##	Income:EducationCollege	0.239	0.095
##	Income:EducationHighschool	0.111	0.445

- The principle is the same when the third variable is continuous:
 - \circ Controlling nets out the slope from how the third variable enters the relationship
 - Interacting gives by how much the slope changes on expectation when the third variable increases by 1
 - And we can control for/interact with multiple third variables

Overview

1. Regressions with continuous variables \checkmark

- 1.1. Estimation
- 1.2. Inference

2. Regressions with discrete variables \checkmark

- 2.1. Binary dependent variable
- 2.2. Binary independent variable
- 2.3. Categorical independent variable

3. Controls and interactions \checkmark

4. Interpretation

4. Interpretation

Train at interpreting coefficients from randomly drawn relationships

