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➜ One is less noisy but �atter

➜ One is noisier but steeper

Both have a correlation of .75

1. Regressions with continuous variables

1.1. Estimation

Consider these two relationships:
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But a given increase in x is not
associated with a same increase
in y!

1. Regressions with continuous variables

1.1. Estimation

Consider these two relationships:
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1. Regressions with continuous variables

1.1. Estimation

The idea of a regression is to �nd the line that �ts the data the best
Such that its slope can indicate how we expect y to change if we increase x by 1 unit
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1. Regressions with continuous variables

1.1. Estimation

To do so we should minimize the distance between each point and the line
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Take for instance the 20th observation: Peru
And consider the following notations:

We denote  the ige of the  country

We denote  the gini of the  country

We denote  the value of the  coordinate of our
line when 

➜ The distance between the  y value and the line is
thus 

We label that distance 

1. Regressions with continuous variables

1.1. Estimation

yi ith

xi ith

ŷi y
x = xi

ith

yi − ŷi

ε̂i
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Because  is the value of the distance between a
point  and its corresponding value on the line 

 we can write:

And because  is a straight line, it can be
expressed as

Where:
 is the y-intercept
 is the slope

Both are estimations of the actual  and  of
the unknown DGP

1. Regressions with continuous variables

1.1. Estimation

ε̂i
yi

ŷi

yi = ŷi + ε̂i

ŷi

ŷi = α̂ + β̂xi

α̂

β̂
α β
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Attempt 1:  is too high and  is
too low ➜  are large

Attempt 2:  is too low and  is
too high ➜  are large

Attempt 3:  and  seem
appropriate ➜  are low

1. Regressions with continuous variables

1.1. Estimation

Combining these two de�nitions yields the equation:

Depending on the values of  and , the value of every  will change

yi = α̂ + β̂xi + ε̂i{
yi = ŷi + ε̂i Definition of distance

ŷi = α̂ + β̂xi Definition of the line

α̂ β̂ ε̂i

α̂ β̂
ε̂i

α̂ β̂
ε̂i

α̂ β̂
ε̂i
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1. Regressions with continuous variables

1.1. Estimation

We want to �nd the values of  and  that minimize the overall distance between the points and the line

Note that we square  to avoid that its positive and negative values compensate
This method is what we call Ordinary Least Squares (OLS)

If we replace  with 
We can solve the minimization problem (see Lecture 7) to obtain:

α̂ β̂

min
α̂,β̂

n

∑
i=1

ε̂i
2

ε̂i

ε̂i yi − α̂ − β̂xi

β̂ = ; α̂ = ȳ − β̂ × x̄
Cov(xi, yi)

Var(xi)
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Vocabulary

This equation we're working on is called a regression model

We say that we regress  on  to �nd the coe�cients  and  that characterize the regression line
We often call  and  parameters of the regression because it is what we tune to �t our model to the data

We also have di�erent names for the  and  variables
 is called the dependent or explained variable
 is called the independent or explanatory variable

We call  the residuals because it is what is left after we �tted the data the best we could

And , i.e., the value on the regression line for a given  are called the �tted values

yi = α + βxi + εi

y x α̂ β̂

α̂ β̂

x y
y
x

ε̂i

ŷi = α̂ + β̂xi xi
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1. Regressions with continuous variables

1.2. Inference

Inference refers to the fact of being able to conclude something from our estimation
The  from our sample is actually an estimation of the unobserved  of the underlying population
We would like to know how reliable  is, how con�dent we are in its estimation
The �rst step of inference is to compute the standard error of 

Notice that the variance, and thus the standard error of our estimate:
Decreases as our sample gets bigger
Gets larger if the points are further away from the regression line on average for a given variance of 

β̂ β

β̂

β̂

se(β̂) = √V̂ar(β̂) =

 
⎷

∑
n

i=1 ε̂i
2

(n − #parameters)∑n

i=1(xi − x̄)2

x
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1. Regressions with continuous variables

1.2. Inference

The magnitude of the standard error gives an indication of the precision of our estimate:
The larger the estimate relative to its standard error, the more precise the estimate

But standard errors are not easily interpretable by themselves
A more direct way to get a sense of the precision for inference is to construct a con�dence interval

➜ Instead of saying that our estimation  is equal to 1.02, we would like to say that we are 95% sure that
the actual  lies between two given values

To obtain a con�dence interval we can use the fact that under speci�c conditions (that you're gonna see next
year) it is possible to derive how this object is distributed:

β̂
β

t̂ ≡
β̂ − β

se(β̂)
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1. Regressions with continuous variables

1.2. Inference

Theory shows that  follows a Student t distribution whose number of degrees of freedom is equal to 

 (in our case 22 countries) minus the number of parameters estimated in the model (in our case 2:  and )

t̂ ≡
β̂−β

se(β̂)

n α β
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1. Regressions with continuous variables

1.2. Inference

Denote  the value such that 97.5% of the distribution is below that value
Then 95% of the distribution lies between  and 

t97.5%

−t97.5% t97.5%
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Thus, we can say that there is a 95% chance for  to be within To get  with 20 df:

qt(.975, 20)

1. Regressions with continuous variables

1.2. Inference

Because we know that  follows this distribution, we know that it has a 95% chance to fall within the

two values  and 

Rearranging the terms yields:

t̂ ≡
β̂−β

se(β̂)

−t97.5% t97.5%

Pr [−t97.5% ≤ ≤ t97.5%] = 95%
β̂ − β

se(β̂)

Pr [β̂ − t97.5% × se(β̂) ≤ β ≤ β̂ + t97.5% × se(β̂)] = 95%

β

β̂ ± t97.5% × se(β̂)

t97.5%
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1. Regressions with continuous variables

1.2. Inference

Con�dence intervals are very e�ective to get a sense of the precision of our estimates and of the range of
values the true parameters could reasonably take

But the p-value is what we tend to ultimately focus on, it is the % chance that our estimation of the true
parameter is di�erent from a given value (generally 0) just coincidentally

Con�dence intervals and p-values are tightly linked
If there is a 4% chance that a parameter equal to 2 is di�erent from 0, I know that the 95% con�dence
interval will start above 0 but quite close, and stop a bit before 4
If a 95% con�dence interval is bounded by 4 and 5, I know the the p-value will be way below 5%

But these two indicators are complementary to easily get the full picture:
With a p-value we can easily know how sure we are that the parameter is di�erent from a given value, but
it is di�cult to get a sense of the set of values the parameters can reasonably take
With the con�dence interval it is the opposite
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1. Regressions with continuous variables

1.2. Inference

P-val. computation: The principle is the same as for standard errors but the reasoning is reversed
For con�dence intervals: we want to know among which values the parameter has a given percentage
chance to fall into
For p-value: we want to know with which percentage chance 0 is out of the set of values that the parameter
could reasonably take

Vocabulary: We talk about signi�cance level
When , we say that the estimate is signi�cant(ly di�erent from 0) at the 5% level
When the p-value is greater than a given threshold of acceptability, we say that the estimate is not
signi�cant

In practice: Usually in Economics we use the 5% threshold
But this is arbitrary, in other �elds the benchmark p-value is di�erent
With this threshold we're wrong once in 20 times

P-value ≤ .05
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2. Regressions with discrete variables

2.1. Binary dependent variable

So far we've considered only continuous variables in our regression models
But what if our dependent variable is discrete?

Consider that we have data on candidates to a job:
Their Baccalauréat grade (/20)
Whether they got accepted
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2. Regressions with discrete variables

2.1. Binary dependent variable

Even if the outcome variable is binary we can regress it on the grade variable
We can convert it into a dummy variable, a variable taking either the value 0 or 1
Here consider a dummy variable taking the value 1 if the person was accepted

1{yi = Accepted} = α̂ + β̂ × Gradei + ε̂i
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2. Regressions with discrete variables

2.1. Binary dependent variable

The �tted values can be viewed as the probability to be accepted for a given grade
The slope is thus by how much the probability of being accepted would increase on expectation for a 1
point increase in the grade
That's why we call OLS regression models with a binary outcome Linear Probability Models
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2. Regressions with discrete variables

2.1. Binary dependent variable

But with an LPM you can end up with 'probabilities' that are lower than 0 and greater than 1
Interpretation is only valid for values of x su�ciently close to the mean
Keep that in mind and be careful when interpreting the results of an LPM
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2. Regressions with discrete variables

2.2. Binary independent variable

Now consider that we individual data containing:
The sex
The height (centimeters)

So instead of
having a binary dependent variable :

we have a binary independent variable

➜ How to interpret the coe�cient  from this regression?

1{yi = Accepted} = α̂ + β̂ × Gradei + ε̂i

Heighti = α̂ + β̂ × 1{xi = Male} + ε̂i

β̂
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2. Regressions with discrete variables

2.2. Binary independent variable

If the sex variable was continuous it would be the expected increase in height for a '1 unit increase' in sex
Here the '1 unit increase' is switching from 0 to 1, i.e. from female to male
Here is the traditionnal scatter plot representation
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2. Regressions with discrete variables

2.2. Binary independent variable

Replacing the point geometry by the corresponding boxplots:
What this '1 unit increase' corresponds to should be clearer
The coe�cient  is actually the di�erence between the average height for males and femalesβ̂
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## 

## ========================================

##                  Dependent variable:    

##              ---------------------------

##                        Height           

## ----------------------------------------

## SexMale                9.5***           

##                         (0.6)           

##                                         

## Constant              165.0***          

##                         (0.4)           

##                                         

## ----------------------------------------

## Observations            1,000           

## R2                       0.2            

## ========================================

## Note:        *p<0.1; **p<0.05; ***p<0.01

Height summary statistics by sex
Sex Min Q1 Med Mean Q3 Max

Female 135.9 158.8 164.6 165.0 170.9 194.7

Male 145.2 168.3 174.4 174.5 180.6 202.6

➜ The  coe�cient is equal to the expected value of 
 when , i.e., to the average height for females

➜ The  coe�cient is equal to expected increase in 
when going from  to , i.e., to the
di�erence between male and female average height

2. Regressions with discrete variables

2.2. Binary independent variable

Let's have a look at the regression results and at the summary statistics of both distributions:

α̂
y x = 0

β̂ y
x = 0 x = 1
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When the dummy equals 0 (females): When the dummy equals 1 (males):

2. Regressions with discrete variables

2.2. Binary independent variable

Let's think of it in terms of a regression model:

We now have  and :

The �tted values write:

Heighti = α̂ + β̂ × 1{xi = Male} + ε̂i

α̂ β̂

Heighti = 165.0 + 9.8 × 1{xi = Male} + ε̂i

ˆHeighti = 165.0 + 9.8 × 1{xi = Male}

ˆHeighti = 165.0 + 9.8 × 0

= 165.0 =
¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯
Height[xi=Female]

ˆHeighti = 165.0 + 9.8 × 1

= 174.8 =
¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯
Height[xi=Male]
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2. Regressions with discrete variables

2.3. Categorical independent variable

So far we've been working with binary categorical variables:
Accepted vs. Rejected, Male vs. Female
But what about discrete variables with more than two categories?

Take for instance the race variable:

asec_2020 <- read.csv("asec_2020.csv")

kable(asec_2020 %>% group_by(Race) %>% summarise(N = n()) %>% t(),

      caption = "Distribution of the Race categorical variable")

Distribution of the Race
categorical variable

Race Asian Black Other White

N 4528 6835 2422 50551

➜ How can we use this variable as an independent variable in our regression framework?
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Sex Male Race Black Other White

Female 0 Asian 0 0 0

Female 0 Asian 0 0 0

Female 0 Black 1 0 0

Female 0 Black 1 0 0

Male 1 Other 0 1 0

Male 1 Other 0 1 0

Male 1 White 0 0 1

Male 1 White 0 0 1

➜ But why do we omit one category every time?

Females are observations for which Male equals 0
Asians are observations for which Black, Other,
and White each equals 0

➜ Females and Asians are reference categories

The coe�cient associated with the Male dummy
was interpreted relative to females
The coe�cients associated with the Black, Other,
and White dummies will be interpreted relative
to Asians

2. Regressions with discrete variables

2.3. Categorical independent variable

Just as we converted our -category variable into  dummy variable, we can convert an -category variable
into  dummy variables:

2 1 n
n − 1
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summary(lm(Earnings ~ Race, asec_2020))$coefficients

##              Estimate Std. Error   t value     Pr(>|t|)

## (Intercept)  77990.78   1149.552  67.84449 0.000000e+00

## RaceBlack   -27413.29   1482.197 -18.49503 3.571079e-76

## RaceOther   -28512.08   1947.305 -14.64181 1.819073e-48

## RaceWhite   -15110.29   1199.933 -12.59262 2.559272e-36

 is still the average earnings for the reference category
coe�cient are still relative to the reference category

Mean earnings by race
Race Mean earnings

Asian 77990.78

Black 50577.49

Other 49478.70

White 62880.49

2. Regressions with discrete variables

2.3. Categorical independent variable

Thus, regressing earnings on the race categorical variable amounts to estimate the equation:

And if we compare the regression results to the average earnings by group:

Earningsi = α̂ + β̂11{Racei = Black} + β̂21{Racei = Other} + β̂31{Racei = White} + ε̂i

α
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2. Regressions with discrete variables

2.3. Categorical independent variable

As you can see from the previous regression results, by default R sorts categories by alphabetical order:

##              Estimate Std. Error   t value     Pr(>|t|)

## (Intercept)  77990.78   1149.552  67.84449 0.000000e+00

## RaceBlack   -27413.29   1482.197 -18.49503 3.571079e-76

## RaceOther   -28512.08   1947.305 -14.64181 1.819073e-48

## RaceWhite   -15110.29   1199.933 -12.59262 2.559272e-36

But oftentimes we would prefer the reference category to be the majority group
In R we can use the relevel() function to change the reference category of a factor

summary(lm(Earnings ~ relevel(as.factor(Race), "White"), asec_2020))$coefficients[, c(1, 2, 4)]

##                                         Estimate Std. Error     Pr(>|t|)

## (Intercept)                             62880.49   344.0464 0.000000e+00

## relevel(as.factor(Race), "White")Asian  15110.29  1199.9326 2.559272e-36

## relevel(as.factor(Race), "White")Black -12302.99   996.8981 5.947231e-35

## relevel(as.factor(Race), "White")Other -13401.79  1609.0045 8.294160e-17
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data <- read.csv("household_data.csv")

head(data, 7) # fictitious data

##   Income Children    Education

## 1     20        1 < Highschool

## 2     10        1 < Highschool

## 3     10        2 < Highschool

## 4     15        0 < Highschool

## 5     15        1 < Highschool

## 6     20        0 < Highschool

## 7     15        2   Highschool

3. Controls and interactions

We can add a third variable z in the regression for two reasons:
Controlling for z allows to net out the relationship between x and y from how they both relate to z
Interacting x with z allows to estimate how the relationship between x and y varies with z

Consider the following �ctitious dataset at the household level
Household annual income
Number of children in the household
Parents' education level
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3. Controls and interactions

There's a clear positive relationship

##             Estimate Pr(>|t|)

## (Intercept)   -0.885    0.319

## Income         0.166    0.000

But what if this relationship was driven by a third variable?
Maybe it's just that more educated parents tend to earn more and to have more children

38 / 43

https://louissirugue.github.io/metrics_on_R/home.html


The crosses are located at the average x and y
values for each education group

Controlling for education shifts x and y by
group such that crosses superimpose

##                     Estimate Pr(>|t|)

## (Intercept)           -0.120    0.892

## Income                 0.064    0.196

## EducationCollege       3.456    0.015

## EducationHighschool    1.856    0.037

3. Controls and interactions

Controlling for education does the same to the slope as recentering the graph with respect to education
In that way, when moving along the x axis, z does not increase but remains constant
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3. Controls and interactions

Here when we do not control for education:

We estimate the overall relationship (here, signi�cantly positive)

But when we control for education:

We estimate the relationship net of the e�ect of education (here, not signi�cant)

Interacting the two variables is going one step further:

It is not simply taking into account the fact that education may plays a role
It estimates by how much the relationship between x and y varies according to z

Childreni = α + βIncomei + εi

Childreni = α + βIncomei + γ11{Educationi = Highschool} + γ21{Educationi = College} + εi

Childreni = α + βIncomei + γ11{Educationi = Highschool} + γ21{Educationi = College}+

δ1Incomei × 1{Educationi = Highschool} + δ2Incomei × 1{Educationi = College} + εi
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##                            Estimate Pr(>|t|)

## (Intercept)                   2.333    0.225

## Income                       -0.100    0.411

## EducationCollege             -1.768    0.553

## EducationHighschool           0.596    0.819

## Income:EducationCollege       0.239    0.095

## Income:EducationHighschool    0.111    0.445

3. Controls and interactions

Interacting income with education provides one slope per education group:

The principle is the same when the third variable is continuous:
Controlling nets out the slope from how the third variable enters the relationship
Interacting gives by how much the slope changes on expectation when the third variable increases by 1
And we can control for/interact with multiple third variables
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4. Interpretation

Train at interpreting coe�cients from randomly drawn relationships
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