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Today: Refresher on Introductory Econometrics

1. Regressions with continuous variables 3. Controls and interactions
1.1. Estimation

1.2. Inference 4. Interpretation

2. Regressions with discrete variables
2.1. Binary dependent variable
2.2. Binary independent variable
2.3. Categorical independent variable
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Today: Refresher on Introductory Econometrics

1. Regressions with continuous variables
1.1. Estimation
1.2. Inference
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1. Regressions with continuous variables

1.1. Estimation

e Consider these two relationships:

Relationship 1 Relationship 2

60
= One is less noisy but flatter
50
= One is noisier but steeper
40

Both have a correlation of .75

30
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1. Regressions with continuous variables

1.1. Estimation

e Consider these two relationships:

60

50

40

30

Relationship 1

Relationship 2
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But a given increase in x is not
associated with a same increase
in y!
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1. Regressions with continuous variables

1.1. Estimation

e The idea of a regression is to find the line that fits the data the best
o Such that its slope can indicate how we expect y to change if we increase x by 1 unit
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1. Regressions with continuous variables

1.1. Estimation

e To do so we should minimize the distance between each point and the line

Attempt 1: sum dist. = 2.73 Attempt 2: sum dist. = 3.91 Attempt 3: sum dist. = 1.9
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1. Regressions with continuous variables

1.1. Estimation

Take for instance the 20t observation: Peru

0.6

0.5

ige

0.4

0.3

0.2

0.4

0.5
gini

0.6

And consider the following notations:
e We denote y; the ige of the i*® country
e We denote z; the gini of the i*® country

e We denote ¥; the value of the y coordinate of our
line whenz = x;

- The distance between the " y value and the line is
thus y; — ¥;

* We label that distance &;
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1. Regressions with continuous variables

1.1. Estimation

ige

0.6

0.5
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* Because &; is the value of the distance between a
point y; and its corresponding value on the line
¥i we can write:

Y = Ui + &

-

e And because 7j; is a straight line, it can be
expressed as

@\i:&‘i‘émi

e Where:
o (is the y-intercept

(to o= o = =

o 3 isthe slope
o Both are estimations of the actual o and S of
the unknown DGP

0.5 06
gini
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1. Regressions with continuous variables

1.1. Estimation

e Combining these two definitions yields the equation:

.o (v, =%, +&  Definition of distance
yi=a+Pxi+&< . . A . )
;i = &+ Bx; Definition of the line

e Depending on the values of & and 3, the value of every &; will change

Attempt 1: sum dist. = 2.73 Attempt 2: sum dist. = 3.91 Attempt 3: sum dist. = 1.9 ~ . . 2
. Attempt 1: & is too high and (3 is

too low = £; are large
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1. Regressions with continuous variables

1.1. Estimation

e We want to find the values of & and 8 that minimize the overall distance between the points and the line
n
min Z @2
af =1

o Note that we square &; to avoid that its positive and negative values compensate
o This method is what we call Ordinary Least Squares (OLS)

o If we replace & withy; — a — Bz;
o We can solve the minimization problem (see Lecture 7) to obtain:

Cov(z;, y;)

b= Var(z;) ;
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Vocabulary

This equation we're working on is called a regression model
Y = a+ Br; + &

o We say that we regress y on x to find the coefficients & and § that characterize the regression line
o We often call & and 3 parameters of the regression because it is what we tune to fit our model to the data

We also have different names for the x and y variables
o g is called the dependent or explained variable
o gz is called the independent or explanatory variable

We call €; the residuals because it is what is left after we fitted the data the best we could

And y; = & + Bx;, i.e., the value on the regression line for a given x; are called the fitted values
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1. Regressions with continuous variables

1.2. Inference

e Inference refers to the fact of being able to conclude something from our estimation
o The B from our sample is actually an estimation of the unobserved (8 of the underlying population
o We would like to know how reliable B is, how confident we are in its estimation
o The first step of inference is to compute the standard error ofB

— = S &

(n — #parameters) Y " (z; — Z)?

e Notice that the variance, and thus the standard error of our estimate:
o Decreases as our sample gets bigger
o Gets larger if the points are further away from the regression line on average for a given variance of x
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1. Regressions with continuous variables

1.2. Inference

e The magnitude of the standard error gives an indication of the precision of our estimate:
o The larger the estimate relative to its standard error, the more precise the estimate

e But standard errors are not easily interpretable by themselves
o A more direct way to get a sense of the precision for inference is to construct a confidence interval

-> Instead of saying that our estimation [ is equal to 1.02, we would like to say that we are 95% sure that
the actual [ lies between two given values

e To obtain a confidence interval we can use the fact that under specific conditions (that you're gonna see next
year) it is possible to derive how this object is distributed:

B-8

t -
se(f)

14 /43



1. Regressions with continuous variables

1.2. Inference

e Theory shows that = ﬂ(_; follows a Student t distribution whose number of degrees of freedom is equal to
Se

n (in our case 22 countries) minus the number of parameters estimated in the model (in our case 2: o and )

Student t distributions

0.3
df

> 0.2
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T 01 ] 60

0.0 I ] ] ] ]
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1. Regressions with continuous variables

1.2. Inference

e Denote tg7 59 the value such that 97.5% of the distribution is below that value
o Then 95% of the distribution lies between —tg7 50, and tg7 59,

0.3

density

0.1

o6 25%5

12 5%
|

-1[97.5%)] t[97.5%]
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1. Regressions with continuous variables

1.2. Inference

Because we know that f = ’B(_; follows this distribution, we know that it has a 95% chance to fall within the
se

two values —tg7 50, and tg7 59,
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Thus, we can say that there is a 95% chance for 3 to be within e To get tg7 59 with 20 df:

B + tg; 50 X se(B) qt(.975, 20)
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1.

1.2.

Regressions with continuous variables

Inference

Confidence intervals are very effective to get a sense of the precision of our estimates and of the range of
values the true parameters could reasonably take

But the p-value is what we tend to ultimately focus on, it is the % chance that our estimation of the true
parameter is different from a given value (generally 0) just coincidentally

Confidence intervals and p-values are tightly linked
o If there is a 4% chance that a parameter equal to 2 is different from 0, I know that the 95% confidence
interval will start above 0 but quite close, and stop a bit before 4
o If a 95% confidence interval is bounded by 4 and 5, I know the the p-value will be way below 5%

But these two indicators are complementary to easily get the full picture:
o With a p-value we can easily know how sure we are that the parameter is different from a given value, but
it is difficult to get a sense of the set of values the parameters can reasonably take
o With the confidence interval it is the opposite
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1. Regressions with continuous variables

1.2. Inference

P-val. computation: The principle is the same as for standard errors but the reasoning is reversed
o For confidence intervals: we want to know among which values the parameter has a given percentage

chance to fall into
o For p-value: we want to know with which percentage chance 0 is out of the set of values that the parameter

could reasonably take

Vocabulary: We talk about significance level
o When P-value < .05, we say that the estimate is significant(ly different from 0) at the 5% level
o When the p-value is greater than a given threshold of acceptability, we say that the estimate is not

significant

In practice: Usually in Economics we use the 5% threshold
o But this is arbitrary, in other fields the benchmark p-value is different
o With this threshold we're wrong once in 20 times
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Overview

1. Regressions with continuous variables v 3. Controls and interactions
1.1. Estimation

1.2. Inference 4. Interpretation

2. Regressions with discrete variables
2.1. Binary dependent variable
2.2. Binary independent variable
2.3. Categorical independent variable
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Overview

1. Regressions with continuous variables v
1.1. Estimation
1.2. Inference

2. Regressions with discrete variables
2.1. Binary dependent variable
2.2. Binary independent variable
2.3. Categorical independent variable
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2. Regressions with discrete variables

2.1. Binary dependent variable

e So far we've considered only continuous variables in our regression models
o But what if our dependent variable is discrete?

e Consider that we have data on candidates to a job:
o Their Baccalauréat grade (/20)
o Whether they got accepted

Accepted B S e S S OO T

Rejected | (i DD W 1‘_—00 @m) @ i I
12 14 16 18
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2. Regressions with discrete variables

2.1. Binary dependent variable
e Even if the outcome variable is binary we can regress it on the grade variable

o We can convert it into a dummy variable, a variable taking either the value 0 or 1
o Here consider a dummy variable taking the value 1 if the person was accepted

1{y; = Accepted} = & +B x Grade; + &;

12 14 16 18

Grade
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2. Regressions with discrete variables

2.1. Binary dependent variable

e The fitted values can be viewed as the probability to be accepted for a given grade
o The slope is thus by how much the probability of being accepted would increase on expectation for a 1
point increase in the grade
o That's why we call OLS regression models with a binary outcome Linear Probability Models

12 13 14 15 16 17 18
Grade
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2. Regressions with discrete variables

2.1. Binary dependent variable

e But with an LPM you can end up with 'probabilities’ that are lower than 0 and greater than 1
o Interpretation is only valid for values of x sufficiently close to the mean
o Keep that in mind and be careful when interpreting the results of an LPM

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Grade
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2. Regressions with discrete variables

2.2. Binary independent variable

e Now consider that we individual data containing:
°o The sex
o The height (centimeters)

e Soinstead of
o having a binary dependent variable :

1{y; = Accepted} = & +B x Grade; + &;
o we have a binary independent variable

Height, = & + 8 x 1{z; = Male} + &;

-» How to interpret the coefficient 3 from this regression?
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2. Regressions with discrete variables

2.2. Binary independent variable

e If the sex variable was continuous it would be the expected increase in height for a '7 unit increase’ in sex
o Here the 'T unit increase’ is switching from 0 to 1, i.e. from female to male

o Here is the traditionnal scatter plot representation

200

180

Height

160

140

1{Sex[i] = Male}
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2. Regressions with discrete variables

2.2. Binary independent variable

e Replacing the point geometry by the corresponding boxplots:
o What this '7T unit increase’ corresponds to should be clearer

o The coefficient 8 is actually the difference between the average height for males and females

200

180

Height

160

140

1{Sex[i] = Male}
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2. Regressions with discrete variables

2.2. Binary independent variable

e Let's have a look at the regression results and at the summary statistics of both distributions:

##

zz _ Pependent variable: Sex Min Q1 Med Mean Q3 Max
## Height Female 137.7 158.4 165.8 165.3 172.9 194.9
B — e

44 SexMale 9. 2kxxk Male  142.7 168.5 175.0 174.5 180.7 200.2
## (0.6)

##

zz Constant 1612(:)32;* - The & coefficient is equal to the expected value of
4 ' ywhen x = 0, i.e., to the average height for females
B — e )

#t# Observations 1,000 - The (8 coefficient is equal to expected increase in y
#4 R2 0.2 : )

48 Note: xp<0.1; **p<@.05; **xp<0.01 difference between male and female average height
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2. Regressions with discrete variables

2.2. Binary independent variable

Let's think of it in terms of a regression model:
Height, = & + B x 1{x; = Male} + ¢;

We now have & and S:

Height, = 165.0 + 9.8 x 1{z; = Male} + ¢;

The fitted values write:

Height, = 165.0 + 9.8 x 1{z; = Male}

* When the dummy equals 0 (females): e When the dummy equals 1 (males):
Height, = 165.0 + 9.8 x 0 Height, = 165.0 + 9.8 x 1

= 165.0 = Height, = 174.8 = Height, _p,1¢]

z;=Female|
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2. Regressions with discrete variables

2.3. Categorical independent variable

e So far we've been working with binary categorical variables:
o Accepted vs. Rejected, Male vs. Female
o But what about discrete variables with more than two categories?

e Take for instance the race variable:

asec_2020 <- read.csv("asec_2020.csv")
kable(asec_2020 %>% group_by(Race) %>% summarise(N = n()) %>% t(),
caption = "Distribution of the Race categorical variable")

Distribution of the Race
categorical variable

Race Asian Black Other White
\\ 4528 6835 2422 50551

=» How can we use this variable as an independent variable in our regression framework?
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2. Regressions with discrete variables

2.3. Categorical independent variable

e Just as we converted our 2-category variable into 1 dummy variable, we can convert an n-category variable

into n — 1 dummy variables:

Sex
Female
Female
Female
Female
Male
Male
Male
Male

Male
0

Race Black Other White

Asian
Asian
Black
Black
Other
Other
White
White

0

o O O O

0

0
0
0
0
0
0

1
1

- But why do we omit one category every time?

* Females are observations for which Male equals 0
e Asians are observations for which Black, Other,
and White each equals 0

- Females and Asians are reference categories

e The coefficient associated with the Male dummy
was interpreted relative to females

e The coefficients associated with the Black, Other,
and White dummies will be interpreted relative
to Asians
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2. Regressions with discrete variables

2.3. Categorical independent variable

e Thus, regressing earnings on the race categorical variable amounts to estimate the equation:

e And if we compare the regression results to the average earnings by group:

Earnings, = & + Bl 1{Race; = Black} + Bz 1{Race;

summary (lm(Earnings ~ Race, asec_2020))S$coefficients

##
##
##
##
##

Estimate Std. Error
(Intercept) 77990.78 1149.552
RaceBlack -27413.29 1482.197
RaceOther -28512.08 1947.305
RaceWhite -15110.29 1199.933

t
67.
-18.
-14.
-12.

value
84449
49503
64181
59262

Pr(>|t])
0.000000e+00
3.571079e-76
1.819073e-48
2.559272e-36

o « is still the average earnings for the reference category
o coefficient are still relative to the reference category

Other} + B;1{Race; = White} + &

Mean earnings by race

Race Mean earnings

Asian 77990.78
Black 50577.49
Other 49478.70
White 62880.49
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2. Regressions with discrete variables

2.3. Categorical independent variable

e Asyou can see from the previous regression results, by default R sorts categories by alphabetical order:

##
##
##
##
##

Estimate Std. Error t value Pr(>|t])
(Intercept) 77990.78 1149.552 67.84449 0.000000e+00
RaceBlack -27413.29 1482.197 -18.49503 3.571079e-76
RaceOther -28512.08 1947.305 -14.64181 1.819073e-48
RaceWhite -15110.29 1199.933 -12.59262 2.559272e-36

e But oftentimes we would prefer the reference category to be the majority group

summary (Ilm(Earnings ~ relevel(as.factor(Race), "White"), asec_2020))S$coefficients[, c(1, 2, 4)]

##
##
##
##
##

o In Rwe can use the relevel () function to change the reference category of a factor

Estimate
(Intercept) 62880.49
relevel(as.factor (Race), "White")Asian 15110.29

relevel(as.factor (Race), "White")Black -12302.99
relevel(as.factor (Race), "White")Other -13401.79

Std. Error
344.0464
1199.9326
996.8981
1609.0045

Pr(>|t])
0.000000e+00
2.559272e-36
5.947231e-35
8.294160e-17
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Overview

1. Regressions with continuous variables v 3. Controls and interactions
1.1. Estimation

1.2. Inference 4. Interpretation

2. Regressions with discrete variables v
2.1. Binary dependent variable
2.2. Binary independent variable
2.3. Categorical independent variable
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Overview

1. Regressions with continuous variables v 3. Controls and interactions
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2. Regressions with discrete variables v
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3. Controls and interactions

e We can add a third variable z in the regression for two reasons:

o Controlling for z allows to net out the relationship between x and y from how they both relate to z
o Interacting x with z allows to estimate how the relationship between x and y varies with z

e Consider the following fictitious dataset at the household level
o Household annual income

data <- read.csv("household_data.csv")
head(data, 7)

##
##
##
##
##
##
##
##

~No ok~ N

o Number of children in the household

o Parents' education level

Income Children

pAC;
10
10
15
15
pAC;
15

N O R ONRE K

AN N N N N AN

Education
Highschoo'l
Highschoo'l
Highschoo'l
Highschoo'l
Highschoo'l
Highschoo'l
Highschoo'l

Children

Income

40

50
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3. Controls and interactions

e There's a clear positive relationship

Hi#t Estimate Pr(>|t])
## (Intercept) -0.885 0.319
## Income 0.166 0.000

o But what if this relationship was driven by a third variable?
o Maybe it's just that more educated parents tend to earn more and to have more children

Education ® <Highschool 4 College ® Highschool

Children

10 20 30 40 50
Income
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3. Controls and interactions

e Controlling for education does the same to the slope as recentering the graph with respect to education
o In that way, when moving along the x axis, z does not increase but remains constant

Education ¢ <Highschool # College * Highschool Education ¢ <Highschool * College * Highschool

= =
2 g 4
D 4 =
= =
(&) o 3
2
2 u [ | [ |
0 - | - 1
10 20 30 40 50 20 30
Income Income
e The crosses are located at the average x and y #it Estimate Pr(>[t])
values for each education group ## (Intercept) B
: . . ## Income 0.064 0.196
o Controlling for education shifts xandy b :
9 _ y by ## EducationCollege 3.456 0.015
group such that crosses superimpose ## EducationHighschool 1.856 0.037

39/43



3. Controls and interactions

Here when we do not control for education:
Children; = a + BIncome; + ¢;

o We estimate the overall relationship (here, significantly positive)

But when we control for education:
Children; = o + BIncome; + v, 1{ Education; = Highschool} + v,1{ Education; = College} + ¢;

o We estimate the relationship net of the effect of education (here, not significant)

Interacting the two variables is going one step further:

Children; = o + BIncome; + v, 1{ Education; = Highschool} + v,1{ Education; = College }+
d1Income; x 1{Education; = Highschool} + d;Income; x 1{ Education; = College} + ¢;

o Itis not simply taking into account the fact that education may plays a role

o It estimates by how much the relationship between x and y varies according to z
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3.

Children

Controls and interactions

Interacting income with education provides one slope per education group:

Education = < Highschool =~ College -= Highschool

##

## (Intercept)

## Income

## EducationCollege

## EducationHighschool

## Income:EducationCollege

## Income:EducationHighschool

Income

The principle is the same when the third variable is continuous:
o Controlling nets out the slope from how the third variable enters the relationship

o Interacting gives by how much the slope changes on expectation when the third variable increases by 1

o And we can control for/interact with multiple third variables

Estimate Pr(>|t])

2.333
-0.100
-1.768

0.596

0.239

0.111

0.
411
.553
.819
.095
.445

@ @ @ @ @

225
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1. Regressions with continuous variables v 3. Controls and interactions v
1.1. Estimation

1.2. Inference 4. Interpretation

2. Regressions with discrete variables v
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4. Interpretation

Train at interpreting coefficients from randomly drawn relationships

hitp://127.0.0.1:7322 | 2| Open in Browser “%- Publish =

Relationships between department characteristics

Regression results
Select inputs

X variable:

Log.population

on

Y variable:
PM2.5.concentration Log.papulation

Constant

=
1]
-
b=}
C
@
5]
-

Select Year:

2012 2015

) B Am

PM2.5. c

Observations

-

- p=0.01

Random selection

Log.population




