
Basic data manipulation

Lecture 3

Louis SIRUGUE

CPES 2 - Fall 2022

Quick reminder

1. Distributions

The distribution of a variable documents all its possible values and how frequent they are

We can describe a distribution with:

2 / 56

https://louissirugue.github.io/metrics_on_R/home.html

Quick reminder

1. Distributions

The distribution of a variable documents all its possible values and how frequent they are

We can describe a distribution with:
Its central tendency

3 / 56

https://louissirugue.github.io/metrics_on_R/home.html

Quick reminder

1. Distributions

The distribution of a variable documents all its possible values and how frequent they are

We can describe a distribution with:
Its central tendency
And its spread

4 / 56

https://louissirugue.github.io/metrics_on_R/home.html

The mean is the sum of all values divided by the
number of observations

The median is the value that divides the (sorted)
distribution into two groups of equal size

The standard deviation is square root of the
average squared deviation from the mean

The interquartile range is the di�erence
between the maximum and the minimum value
from the middle half of the distribution

Quick reminder

2. Central tendency

3. Spread

x̄ =
N

∑
i=1

xi

1

N
Med(x) = {

x[] if N is odd

if N is even

N+1
2

x[]+x[+1]N

2
N

2

2

SD(x) =√Var(x) =

⎷

N

∑
i=1

(xi − x̄)21

N IQR = Q3 − Q1

5 / 56

https://louissirugue.github.io/metrics_on_R/home.html

Quick reminder

4. Inference

In Statistics, we view variables as a given realization of a data generating process
Hence, the mean is what we call an empirical moment, which is an estimation...
... of the expected value, the theoretical moment of the DGP we're interested in

To know how con�dent we can be in this estimation, we need to compute a con�dence interval

It gets larger as the variance of the distribution of increases
And gets smaller as the sample size increases

[x̄ − tn−1, 97.5% × ; x̄ + tn−1, 97.5% ×]
SD(x)

√n

SD(x)

√n

x
n

6 / 56

https://louissirugue.github.io/metrics_on_R/home.html

Warm up practice

1) Import the ligue1.csv dataset and store it in an object called fb

2) Create a subset of this dataset containing only matches that took place at 13h

3) Print the number of matches in this subset and compute the average attendance

4) Redo the same exercise on matches that took place at 20h45

You've got 5 minutes!

7 / 56

04:56

Solution

1) Import the ligue1.csv dataset and store it in an object called fb

fb <- read.csv("C:/User/Documents/ligue1.csv", encoding = "UTF-8")

2) Create a subset of this dataset containing only matches that took place at 13h

sub13 <- fb[fb$Time == "13:00",]

3) Print the number of matches in this subset and compute the average attendance

nrow(sub13)

[1] 32

mean(sub13$Attendance)

[1] NA

8 / 56

Solution

When there are missing values in a vector, the mean function returns NA
We need to set the na.rm option to TRUE

3) Print the number of matches in this subset and compute the average attendance

mean(sub13$Attendance, na.rm = T)

[1] 19038

4) Redo the same exercise on matches that took place at 20h45

sub2045 <- fb[fb$Time == "20:45",]
nrow(sub2045)

[1] 29

mean(sub2045$Attendance, na.rm = T)

[1] 36418.64

9 / 56

1. The dplyr package
1.1. Packages
1.2. Basic functions
1.3. group_by() and summarise()

2. Merge and reshape
2.1. Merge and append data
2.2. Reshape data

3. A few words on learning R
3.1. When it doesn't work the way you want
3.2. Where to �nd help
3.3. When it doesn't work at all

4. Wrap up!

Today we learn how to manipulate data

10 / 56

https://louissirugue.github.io/metrics_on_R/home.html

1. The dplyr package
1.1. Packages
1.2. Basic functions
1.3. group_by() and summarise()

Today we learn how to manipulate data

11 / 56

https://louissirugue.github.io/metrics_on_R/home.html

1. The dplyr package

1.1. Packages

So far we only used functions that are directly available in R
But there are tons of user-created functions out there that can make your life so much easier
These functions are shared in what we call packages

Packages are bundles of functions that R users put at the disposal of other R users
Packages are centralized on the Comprehensive R Archive Network (CRAN)
To download and install a CRAN package you can simply use install.packages()

All the functions of the dplyr grammar are gathered in the dplyr package
We can download these functions and make them ready to use with the install.packages() function

install.packages("dplyr") # Requires an internet connection

The dplyr package is now installed on your computer
You won't have to do it again

12 / 56

https://cran.r-project.org/
https://louissirugue.github.io/metrics_on_R/home.html

1. The dplyr package

1.1. Packages

The dplyr package is now on your computer, but it is not loaded in R

ls("package:dplyr")

Error in as.environment(pos): no item called "package:dplyr" on the search list

You need to use the library() command to load it

library(dplyr)
ls("package:dplyr")[1:5]

[1] "%>%" "across" "add_count" "add_count_" "add_row"

But even though the package is permanently installed, it is loaded only for your current session
Each time you start a new R session, you'll have to load the packages you need with library()

13 / 56

https://louissirugue.github.io/metrics_on_R/home.html

1. The dplyr package

1.2. Basic functions

dplyr is a grammar of data manipulation providing very user-friendly functions to handle the most common
data manipulation tasks:

mutate(): add/modify variables
select(): keep/drop variables (columns)
filter(): keep/drop observations (rows)
arrange(): sort rows according to the values of given variable(s)
summarise(): aggregate the data into descriptive statistics

A very handy operator to use with the dplyr grammar is the pipe %>%

You can basically read a %>% b() as "apply function b() to object a"

With this operator you can easily chain the operations you apply to an object

14 / 56

https://louissirugue.github.io/metrics_on_R/home.html

1. The dplyr package

1.2. Basic functions

fb
#

#

#

#

#

#

Wk Day Date Time Home xG Score xG.1 Away Attendance ...
1 1 Fri 2021-08-06 21:00 Monaco 2.0 1–1 0.3 Nantes 7500 ...
2 1 Sat 2021-08-07 17:00 Lyon 1.4 1–1 0.8 Brest 29018 ...
3 1 Sat 2021-08-07 21:00 Troyes 0.8 1–2 1.2 Paris S-G 15248 ...
4 1 Sun 2021-08-08 13:00 Rennes 0.6 1–1 2.0 Lens 22567 ...
5 1 Sun 2021-08-08 15:00 Bordeaux 0.7 0–2 3.3 Clermont Foot 18748 ...
6 1 Sun 2021-08-08 15:00 Strasbourg 0.4 0–2 0.9 Angers 23250 ...
7 1 Sun 2021-08-08 15:00 Nice 0.8 0–0 0.2 Reims 18030 ...
8 1 Sun 2021-08-08 15:00 Saint-Étienne 2.1 1–1 1.3 Lorient 20461 ...
9 1 Sun 2021-08-08 17:00 Metz 0.7 3–3 1.4 Lille 15551 ...

15 / 56

https://louissirugue.github.io/metrics_on_R/home.html

1. The dplyr package

1.2. Basic functions

fb %>%
 select(Home, xG, Score, xG.1, Away) # Keep/drop certain columns

#

#

#

#

#

Home xG Score xG.1 Away
1 Monaco 2.0 1–1 0.3 Nantes
2 Lyon 1.4 1–1 0.8 Brest
3 Troyes 0.8 1–2 1.2 Paris S-G
4 Rennes 0.6 1–1 2.0 Lens
5 Bordeaux 0.7 0–2 3.3 Clermont Foot
6 Strasbourg 0.4 0–2 0.9 Angers
7 Nice 0.8 0–0 0.2 Reims
8 Saint-Étienne 2.1 1–1 1.3 Lorient
9 Metz 0.7 3–3 1.4 Lille

16 / 56

https://louissirugue.github.io/metrics_on_R/home.html

1. The dplyr package

1.2. Basic functions

fb %>%
 select(Home, xG, Score, xG.1, Away) %>% # Keep/drop certain columns
 mutate(home_winner = xG > xG.1) # Create a new variable

#

#

#

#

Home xG Score xG.1 Away home_winner
1 Monaco 2.0 1–1 0.3 Nantes TRUE
2 Lyon 1.4 1–1 0.8 Brest TRUE
3 Troyes 0.8 1–2 1.2 Paris S-G FALSE
4 Rennes 0.6 1–1 2.0 Lens FALSE
5 Bordeaux 0.7 0–2 3.3 Clermont Foot FALSE
6 Strasbourg 0.4 0–2 0.9 Angers FALSE
7 Nice 0.8 0–0 0.2 Reims TRUE
8 Saint-Étienne 2.1 1–1 1.3 Lorient TRUE
9 Metz 0.7 3–3 1.4 Lille FALSE

17 / 56

https://louissirugue.github.io/metrics_on_R/home.html

1. The dplyr package

1.2. Basic functions

fb %>%
 select(Home, xG, Score, xG.1, Away) %>% # Keep/drop certain columns
 mutate(home_winner = xG > xG.1) %>% # Create a new variable
 filter(Home == "Rennes") # Keep/drop certain rows

#

#

#

Home xG Score xG.1 Away home_winner
1 Rennes 0.6 1–1 2.0 Lens FALSE
2 Rennes 0.9 1–0 0.5 Nantes TRUE
3 Rennes 1.0 0–2 0.5 Reims TRUE
4 Rennes 2.4 6–0 0.3 Clermont Foot TRUE
5 Rennes 0.8 2–0 1.4 Paris S-G FALSE
6 Rennes 1.5 1–0 0.6 Strasbourg TRUE
7 Rennes 3.8 4–1 1.1 Lyon TRUE
8 Rennes 3.1 2–0 0.7 Montpellier TRUE
9 Rennes 0.8 1–2 0.6 Lille TRUE

18 / 56

https://louissirugue.github.io/metrics_on_R/home.html

1. The dplyr package

1.2. Basic functions

fb %>%
 select(Home, xG, Score, xG.1, Away) %>% # Keep/drop certain columns
 mutate(home_winner = xG > xG.1) %>% # Create a new variable
 filter(Home == "Rennes") %>% # Keep/drop certain rows
 arrange(-xG) # Sort rows

#

#

Home xG Score xG.1 Away home_winner
1 Rennes 3.8 4–1 1.1 Lyon TRUE
2 Rennes 3.3 6–0 0.4 Bordeaux TRUE
3 Rennes 3.3 6–1 0.9 Metz TRUE
4 Rennes 3.1 2–0 0.7 Montpellier TRUE
5 Rennes 2.7 2–0 0.3 Brest TRUE
6 Rennes 2.6 4–1 0.4 Troyes TRUE
7 Rennes 2.4 6–0 0.3 Clermont Foot TRUE
8 Rennes 1.9 2–3 2.9 Monaco FALSE
9 Rennes 1.7 2–0 0.3 Angers TRUE

19 / 56

https://louissirugue.github.io/metrics_on_R/home.html

1. The dplyr package

1.2. Basic functions

fb %>%
 select(Home, xG, Score, xG.1, Away) %>% # Keep/drop certain columns
 mutate(home_winner = xG > xG.1) %>% # Create a new variable
 filter(Home == "Rennes") %>% # Keep/drop certain rows
 arrange(-xG) %>% # Sort rows
 summarise(expected_wins = mean(home_winner), # Aggregate into statistics
 expected_goals = sum(xG)) #

expected_wins expected_goals
1 0.8421053 36.6

20 / 56

https://louissirugue.github.io/metrics_on_R/home.html

ifelse

fb %>%
 select(Home, Attendance) %>%
 mutate(att_bin = ifelse(Attendance > 10000,

"Large",
"Low")

) %>% head()

Home Attendance att_bin
1 Monaco 7500 Low
2 Lyon 29018 Large
3 Troyes 15248 Large
4 Rennes 22567 Large
5 Bordeaux 18748 Large
6 Strasbourg 23250 Large

case_when

fb %>%
 select(Home, xG, xG.1, Away) %>%
 mutate(xWin = case_when(xG > xG.1 ~ "Home",
 xG == xG.1 ~ "Draw",
 xG < xG.1 ~ "Away")
) %>% head()

Home xG xG.1 Away xWin
1 Monaco 2.0 0.3 Nantes Home
2 Lyon 1.4 0.8 Brest Home
3 Troyes 0.8 1.2 Paris S-G Away
4 Rennes 0.6 2.0 Lens Away
5 Bordeaux 0.7 3.3 Clermont Foot Away
6 Strasbourg 0.4 0.9 Angers Away

1. The dplyr package

1.2. Basic functions

Here are two very handy functions to use within mutate()

21 / 56

https://louissirugue.github.io/metrics_on_R/home.html

fb %>%
 select(Wk, Home, xG) %>%
 mutate(all.xG = mean(xG)) %>%
 head(10)

Wk Home xG all.xG
1 1 Monaco 2.0 1.473421
2 1 Lyon 1.4 1.473421
3 1 Troyes 0.8 1.473421
4 1 Rennes 0.6 1.473421
5 1 Bordeaux 0.7 1.473421
6 1 Strasbourg 0.4 1.473421
7 1 Nice 0.8 1.473421
8 1 Saint-Étienne 2.1 1.473421
9 1 Metz 0.7 1.473421
10 1 Montpellier 0.5 1.473421

fb %>%
 select(Wk, Home, xG) %>%
 group_by(Home) %>%
 mutate(home.xG = mean(xG)) %>%
 head(6)

A tibble: 6 x 4
Groups: Home [6]
Wk Home xG home.xG
<int> <chr> <dbl> <dbl>
1 1 Monaco 2 1.69
2 1 Lyon 1.4 2.07
3 1 Troyes 0.8 1.21
4 1 Rennes 0.6 1.93
5 1 Bordeaux 0.7 1.23
6 1 Strasbourg 0.4 1.73

1. The dplyr package

1.3. group_by() and summarise()

With group_by() you can perform computations separately for the di�erent categories of a variable

22 / 56

https://louissirugue.github.io/metrics_on_R/home.html

fb %>%
 group_by(Wk) %>%
 summarise(n = n(),
 tot_xG = sum(xG)+sum(xG.1),
 avg_WG = tot_xG/n) %>%
 head(4)

A tibble: 4 x 4
Wk n tot_xG avg_WG
<int> <int> <dbl> <dbl>
1 1 10 23.4 2.34
2 2 10 26.6 2.66
3 3 10 25.7 2.57
4 4 10 30.4 3.04

mutate() summarise()

mutate() takes an operation that converts:
A vector into another vector

summarise() takes an operation that converts:
A vector into a value

Ungrouping

group_by() applies to all subsequent operations
To cancel its e�ect you must ungroup() the data

fb %>%
 group_by(Wk) %>%
 mutate(test = mean(xG)) %>%
 ungroup() %>%
...

1. The dplyr package

1.3. group_by() and summarise()

It is particularly useful with summarise()
summarise keeps the grouping variable
and computes statistics for each category

≠

23 / 56

https://louissirugue.github.io/metrics_on_R/home.html

Practice

1) Start from the fb dataset and keep only the variables Home, Score and Away

2) Use the separate() function from tidyr to split the Score variable into home_score and away_score

data.frame(x = "a_b") %>%
 separate(x, c("x", "y"), "_")

x y
1 a b

3) Convert these two variables into numeric vectors

4) Create a variable named winner that takes the values Home, Draw and Away depending on the score

5) Use group_by() and summarise() to compute the percentage of draws, home wins and away wins

You've got 10 minutes!
24 / 56

10:00

Solution

1) Start from the fb dataset and keep only the variables Home, Score and Away

fb %>%
 select(Home, Score, Away) %>%
 head(2)

Home Score Away
1 Monaco 1-1 Nantes
2 Lyon 1-1 Brest

2) Use the separate() function from tidyr to split the Score variable into home_score and away_score

fb %>%
 select(Home, Score, Away) %>%
 separate(Score, c("home_score", "away_score"), "-") %>%
 head(2)

Home home_score away_score Away
1 Monaco 1 1 Nantes
2 Lyon 1 1 Brest

25 / 56

Solution

3) Convert these two variables into numeric vectors

4) Create a variable named winner that takes the values Home, Draw and Away depending on the score

fb %>%
 select(Home, Score, Away) %>%
 separate(Score, c("home_score", "away_score"), "-") %>%
 mutate(home_score = as.numeric(home_score),
 away_score = as.numeric(away_score),
 winner = case_when(home_score < away_score ~ "Away",
 home_score == away_score ~ "Draw",
 home_score > away_score ~ "Home")) %>%
 head()

Home home_score away_score Away winner
1 Monaco 1 1 Nantes Draw
2 Lyon 1 1 Brest Draw
3 Troyes 1 2 Paris S-G Away
4 Rennes 1 1 Lens Draw
5 Bordeaux 0 2 Clermont Foot Away
6 Strasbourg 0 2 Angers Away

26 / 56

Solution

5) Use group_by() and summarise()to compute the percentage of draws, home wins and away wins

fb %>%
 select(Home, Score, Away) %>%
 separate(Score, c("home_score", "away_score"), "-") %>%
 mutate(home_score = as.numeric(home_score),
 away_score = as.numeric(away_score),
 winner = case_when(home_score < away_score ~ "Away",
 home_score == away_score ~ "Draw",
 home_score > away_score ~ "Home")) %>%
 group_by(winner) %>%
 summarise(pct = 100 * (n() / nrow(fb)))

A tibble: 3 x 2
winner pct
<chr> <dbl>
1 Away 30.5
2 Draw 26.8
3 Home 42.6

27 / 56

1. The dplyr package ✔
1.1. Packages
1.2. Basic functions
1.3. group_by() and summarise()

2. Merge and reshape
2.1. Merge and append data
2.2. Reshape data

3. A few words on learning R
3.1. When it doesn't work the way you want
3.2. Where to �nd help
3.3. When it doesn't work at all

4. Wrap up!

Overview

28 / 56

https://louissirugue.github.io/metrics_on_R/home.html

1. The dplyr package ✔
1.1. Packages
1.2. Basic functions
1.3. group_by() and summarise()

2. Merge and reshape
2.1. Merge and append data
2.2. Reshape data

Overview

29 / 56

https://louissirugue.github.io/metrics_on_R/home.html

2. Merge and reshape

2.1. Merge and append data

Research projects often imply to combine data from di�erent sources
Either to add observations (append rows)
Either to add variables (merge columns)

30 / 56

https://louissirugue.github.io/metrics_on_R/home.html

2. Merge and reshape

2.1. Merge and append data

Research projects often imply to combine data from di�erent sources
Either to add observations (append rows)
Either to add variables (merge columns)

31 / 56

https://louissirugue.github.io/metrics_on_R/home.html

2. Merge and reshape

2.1. Merge and append data

Research projects often imply to combine data from di�erent sources
Either to add observations (append rows)
Either to add variables (merge columns)

32 / 56

https://louissirugue.github.io/metrics_on_R/home.html

read.csv("attainment_FR_UK_US.csv")

country year share_tertiary
1 FRA 2015 44.68760
2 GBR 2015 49.94341
3 USA 2015 46.51771

read.csv("attainment_IT_SP.csv")

country year share_tertiary
1 ITA 2015 25.14996
2 ESP 2015 40.95978

Variables in the two datasets should be the same:
Same name
Same class

2. Merge and reshape

2.1. Merge and append data: The bind_rows() function

attainment <- read.csv("attainment_FR_UK_US.csv") %>%
 bind_rows(read.csv("attainment_IT_SP.csv"))
attainment

country year share_tertiary
1 FRA 2015 44.68760
2 GBR 2015 49.94341
3 USA 2015 46.51771
4 ITA 2015 25.14996
5 ESP 2015 40.95978

33 / 56

https://louissirugue.github.io/metrics_on_R/home.html

2. Merge and reshape

2.1. Merge and append data: *_join() functions

Join functions all work the same way:
A dataset A with a variable X and other variables
A dataset B with a variable X and other variables
X is the common variable, so datasets will be joined by X

The 4 main join functions
Function For X in A & B For X in A only For X in B only Summary

A %>% left_join(B, by = "X") Kept Kept Dropped Only keeps what's in A

A %>% right_join(B, by = "X") Kept Dropped Kept Only keeps what's in B

A %>% inner_join(B, by = "X") Kept Dropped Dropped Only keeps what's common

A %>% full_join(B, by = "X") Kept Kept Kept Keeps everything

34 / 56

https://louissirugue.github.io/metrics_on_R/home.html

2. Merge and reshape

⚠ Beware of NAs! ⚠

When you have values of X that are not common to both datasets
Any other join than the inner_join() will generate NAs

attainment %>% full_join(read.csv("spending.csv"), by = "country")

country year.x share_tertiary year.y share_gdp
1 FRA 2015 44.68760 2015 3.398
2 GBR 2015 49.94341 NA NA
3 USA 2015 46.51771 2015 3.207
4 ITA 2015 25.14996 NA NA
5 ESP 2015 40.95978 NA NA
6 RUS NA NA 2015 1.843

Any variable from A (B) other than those stated in by= will be NA for observations that are only in B (A)

This holds when a variable that is not mentioned in the by= argument appears in both datasets:
In that case, R adds a data-speci�c su�x to the names and keeps them both
The variable from B (here year.y) will be NA for observations that are only in A only (here GBR, ITA, ESP)

35 / 56

https://louissirugue.github.io/metrics_on_R/home.html

2. Merge and reshape

2.1. Merge and append data: example

attainment %>% left_join(read.csv("spending.csv"), by = "country")

country year.x share_tertiary year.y share_gdp
1 FRA 2015 44.68760 2015 3.398
2 GBR 2015 49.94341 NA NA
3 USA 2015 46.51771 2015 3.207
4 ITA 2015 25.14996 NA NA
5 ESP 2015 40.95978 NA NA

attainment %>% right_join(read.csv("spending.csv"), by = "country")

country year.x share_tertiary year.y share_gdp
1 FRA 2015 44.68760 2015 3.398
2 USA 2015 46.51771 2015 3.207
3 RUS NA NA 2015 1.843

➜ What would be the result of an inner_join() here?

36 / 56

https://louissirugue.github.io/metrics_on_R/home.html

Wide format
country year share_tertiary share_gdp

FRA 2015 44.69 3.40

USA 2015 46.52 3.21

Long format
country year Variable Value

FRA 2015 share_tertiary 44.69

FRA 2015 share_gdp 3.40

USA 2015 share_tertiary 46.52

USA 2015 share_gdp 3.21

2. Merge and reshape

2.2. Reshape data

It is important to be able to switch from the long to the wide format and conversely
Some computations should be done in one format or the other

37 / 56

https://louissirugue.github.io/metrics_on_R/home.html

2. Merge and reshape

2.2. Reshape data: From wide to long with pivot_longer()

wide <- attainment %>%
 inner_join(read.csv("spending.csv") %>% select(-year),
 by = "country")
wide

country year share_tertiary share_gdp
1 FRA 2015 44.68760 3.398
2 USA 2015 46.51771 3.207

➜ Pivoting to long format can be seen as putting variables on top of each other rather side to side

We need to indicate:
Which variables to stack
The name of the variable in which we want the values of the stacked variables to be stored
The name of the variable that will indicate to which variable corresponds each value

38 / 56

https://louissirugue.github.io/metrics_on_R/home.html

2. Merge and reshape

2.2. Reshape data: From wide to long with pivot_longer()

long <- wide %>%
Which variable to should be stacked

 pivot_longer(c(share_tertiary, share_gdp),
Where their values should be stored

 values_to = "Value",
Where to store which variable corresponds each value

 names_to = "Variable")
long

A tibble: 4 x 4
country year Variable Value
<chr> <int> <chr> <dbl>
1 FRA 2015 share_tertiary 44.7
2 FRA 2015 share_gdp 3.40
3 USA 2015 share_tertiary 46.5
4 USA 2015 share_gdp 3.21

39 / 56

https://louissirugue.github.io/metrics_on_R/home.html

2. Merge and reshape

2.2. Reshape data: From long to wide with pivot_wider()

To pivot in a wide format we need to indicate:
Which variable contains values of the variables we want to put side to side
Which variable indicates which variable correspond to each value

wide <- long %>%
Where the values are

 pivot_wider(values_from = "Value",
Where the corresponding variable names are

 names_from = "Variable")
wide

A tibble: 2 x 4
country year share_tertiary share_gdp
<chr> <int> <dbl> <dbl>
1 FRA 2015 44.7 3.40
2 USA 2015 46.5 3.21

40 / 56

https://louissirugue.github.io/metrics_on_R/home.html

Practice

1) From the fb dataset, create a variable league equal to "ligue1" and a variable season equal to "2021-
2022" and save this new data in an object named full_fb

2) In data.zip you will �nd the rest of the data for the seasons 2019-2020 to 2021-2022 for the league 1, the
bundesliga and the premier league. Append all these data to full_fb. Make sure to create the variables
league and season in each data set before appending.

3) Use the separate function from tidyr to extract the number of goals scored by the home and away team

4) Convert these variables as numeric and create a variable equal to the sum of the goals from the two
teams

5) Summarise your data into the total number of goals score per league/season

6) Reshape your data such that you have 1 row per league and 1 column per season

You've got 10 minutes!
41 / 56

10:00

Solution

1) From the fb dataset, create a variable league equal to "ligue1" and a variable season equal to "2021-
2022" and save this new data in an object named full_fb

full_fb <- fb %>% mutate(league = "ligue1", season = "2021-2022")

2) In data.zip you will �nd the rest of the data for the seasons 2019-2020 to 2021-2022 for the league 1, the
bundesliga and the premier league. Append all these data to full_fb. Make sure to create the variables
league and season in each data set before appending.

full_fb <- full_fb %>%
 bind_rows(read.csv("ligue1_2021.csv") %>% mutate(league = "ligue1", season = "2020-2021")) %>%
 bind_rows(read.csv("ligue1_1920.csv") %>% mutate(league = "ligue1", season = "2019-2020")) %>%
 bind_rows(read.csv("preml_2122.csv") %>% mutate(league = "preml", season = "2021-2022")) %>%
 bind_rows(read.csv("preml_2021.csv") %>% mutate(league = "preml", season = "2020-2021")) %>%
 bind_rows(read.csv("preml_1920.csv") %>% mutate(league = "preml", season = "2019-2020")) %>%
 bind_rows(read.csv("bundes_2122.csv") %>% mutate(league = "bundes", season = "2021-2022")) %>%
 bind_rows(read.csv("bundes_2021.csv") %>% mutate(league = "bundes", season = "2020-2021")) %>%
 bind_rows(read.csv("bundes_1920.csv") %>% mutate(league = "bundes", season = "2019-2020"))

42 / 56

Solution

3) Use the separate function from tidyr to extract the number of goals scored by the home and away team

full_fb <- full_fb %>%
 separate(Score, c("home_score", "away_score"), "-")

4) Convert these variables as numeric and create a variable equal to the sum of the goals from the two
teams

full_fb <- full_fb %>%
 mutate(home_score = as.numeric(home_score),
 away_score = as.numeric(away_score),
 goals = home_score + away_score)

5) Summarise your data into the total number of goals score per league/season

full_fb <- full_fb %>%
 group_by(league, season) %>%
 summarise(goals = sum(goals))

43 / 56

Solution

6) Reshape your data such that you have 1 row per league and 1 column per season

full_fb %>%
 pivot_wider(names_from = "season", values_from = "goals")

A tibble: 3 x 4
Groups: league [3]
league `2019-2020` `2020-2021` `2021-2022`
<chr> <dbl> <dbl> <dbl>
1 bundes 982 928 954
2 ligue1 704 1049 1067
3 preml 1034 1024 1071

44 / 56

1. The dplyr package ✔
1.1. Packages
1.2. Basic functions
1.3. group_by() and summarise()

2. Merge and reshape ✔
2.1. Merge and append data
2.2. Reshape data

3. A few words on learning R
3.1. When it doesn't work the way you want
3.2. Where to �nd help
3.3. When it doesn't work at all

4. Wrap up!

Overview

45 / 56

https://louissirugue.github.io/metrics_on_R/home.html

1. The dplyr package ✔
1.1. Packages
1.2. Basic functions
1.3. group_by() and summarise()

2. Merge and reshape ✔
2.1. Merge and append data
2.2. Reshape data

3. A few words on learning R
3.1. When it doesn't work the way you want
3.2. Where to �nd help
3.3. When it doesn't work at all

Overview

46 / 56

https://louissirugue.github.io/metrics_on_R/home.html

3. A few words on learning R

3.1. When it doesn't work the way you want

When things do not work the way you want, NAs are the usual suspects
For instance, this is how the mean function reacts to NAs:

mean(c(1, 2, NA))

[1] NA

mean(c(1, 2, NA), na.rm = T)

[1] 1.5

You should systematically check for NAs!

is.na(c(1, 2, NA))

[1] FALSE FALSE TRUE

47 / 56

https://louissirugue.github.io/metrics_on_R/home.html

3. A few words on learning R

3.1. When it doesn't work the way you want

Don't pipe blindfolded!
Check that each command does what it's expected to do
View or print your data at each step

fb %>%
 select(Home, Score, Away) %>%
 head(1)

Home Score Away
1 Monaco 1-1 Nantes

fb %>%
 select(Home, Score, Away) %>%
 separate(Score, c("home_score", "away_score"), "-") %>%
 head(1)

Home home_score away_score Away
1 Monaco 1 1 Nantes

48 / 56

https://louissirugue.github.io/metrics_on_R/home.html

3. A few words on learning R

3.2. Where to �nd help

Oftentimes things don't work either because:
You don't understand a function's argument
Or you don't know that there exists an argument that you should use

This is precisely what help �les are made for
Every function has a help �le, just enter ? and the name of your function in the console
The help �le will pop up in the Help tab of R studio

?paste

49 / 56

https://louissirugue.github.io/metrics_on_R/home.html

3. A few words on learning R

3.2. Where to �nd help

Search on the internet!
Your question is for sure already asked and answered on stackover�ow

50 / 56

https://stackoverflow.com/
https://louissirugue.github.io/metrics_on_R/home.html

3. A few words on learning R

3.3. When it doesn't work at all

Sometimes R breaks and returns an error (usually kind of cryptic)

read.csv("C:\Users\Documents\R")

Error: '\U' used without hex digits in character string starting ""C:\U"

1. Look for keywords that might help you understand where it comes from
2. Paste in on Google with the name of your command

51 / 56

https://louissirugue.github.io/metrics_on_R/home.html

1. The dplyr package ✔
1.1. Packages
1.2. Basic functions
1.3. group_by() and summarise()

2. Merge and reshape ✔
2.1. Merge and append data
2.2. Reshape data

3. A few words on learning R ✔
3.1. When it doesn't work the way you want
3.2. Where to �nd help
3.3. When it doesn't work at all

4. Wrap up!

Overview

52 / 56

https://louissirugue.github.io/metrics_on_R/home.html

Function Meaning

mutate() Modify or create a variable

select() Keep a subset of variables

�lter() Keep a subset of observations

arrange() Sort the data

group_by() Group the data

summarise() Summarizes variables into 1 observation per group

4. Wrap up!

1. Packages

library(dplyr)

2. Main dplyr functions

53 / 56

https://louissirugue.github.io/metrics_on_R/home.html

4. Wrap up!

3. Merge data

a <- data.frame(x = c(1, 2, 3), y = c("a", "b", "c"))
b <- data.frame(x = c(4, 5, 6), y = c("d", "e", "f"))
c <- data.frame(x = 1:6, z = c("alpha", "bravo", "charlie", "delta", "echo", "foxtrot"))

a %>% bind_rows(b) %>% left_join(c, by = "x")

x y z

1 a alpha

2 b bravo

3 c charlie

4 d delta

5 e echo

6 f foxtrot

54 / 56

https://louissirugue.github.io/metrics_on_R/home.html

4. Wrap up!

4. Reshape data

country year share_tertiary share_gdp

FRA 2015 44.69 3.40

USA 2015 46.52 3.21

data %>% pivot_longer(c(share_tertiary, share_gdp), names_to = "Variable", values_to = "Value")

country year Variable Value

FRA 2015 share_tertiary 44.69

FRA 2015 share_gdp 3.40

USA 2015 share_tertiary 46.52

USA 2015 share_gdp 3.21
55 / 56

https://louissirugue.github.io/metrics_on_R/home.html

For next time

Install the R packages needed for Part I of the course:

ggplot2

rmarkdown

knitr

DT

56 / 56

https://louissirugue.github.io/metrics_on_R/home.html

