
Text data & sentiment analysis

Lecture 6

Louis SIRUGUE

CPES 2 - Fall 2022

Quick reminder

1. Three types of contents

 YAML header ➜

 Code chunks ➜

 Text ➜

2 / 63

https://louissirugue.github.io/metrics_on_R/home.html

Syntax

`paste("a", "b", sep = "-")`

`r paste("a", "b", sep = "-")`

Output

paste("a", "b", sep = "-")

a-b

Quick reminder

2. Useful features

➜ Inline code allows to include the output of some R code within text areas of your report

➜ kable() for clean html tables and datatable() to navigate in large tables

kable(results_table)
datatable(results_table)

3 / 63

https://louissirugue.github.io/metrics_on_R/home.html

The mean formula with one $ on each side

 ➜ For inline equations

The mean formula with two $ on each side

 ➜ For large/emphasized equations

Quick reminder

3. LaTeX for equations

 is a convenient way to display mathematical symbols and to structure equations
The syntax is mainly based on backslashes \ and braces {}

 ➜ What you type in the text area: $x \neq \frac{\alpha \times \beta}{2}$

 ➜ What is rendered when knitting the document:

To include a LaTeX equation in R Markdown, you simply have to surround it with the $ sign

LT XA E

x ≠
α×β

2

¯̄¯x = ∑
N

i=1 xi
1

N ¯̄¯x =

N

∑
i=1

xi

1

N
4 / 63

https://louissirugue.github.io/metrics_on_R/home.html

Today: Text data and sentiment analysis

1. Cleaning text data
1.1. Exploring the data
1.2. Regular expressions
1.3. Tokenization

2. Sentiment analysis
2.1. Stopwords
2.2. Sentiments
2.3. Analysis

4. Wrap up!

5 / 63

https://louissirugue.github.io/metrics_on_R/home.html

Today: Text data and sentiment analysis

1. Cleaning text data
1.1. Exploring the data
1.2. Regular expressions
1.3. Tokenization

6 / 63

https://louissirugue.github.io/metrics_on_R/home.html

1. Cleaning text data

1.1. Exploring the data

Being able to handle strings and text data can be very useful
For webscrapping
To enlarge your set of observable (from tweets, reviews, political speeches/brochures)
Even with standard data containing character variables

But text data is quite complicated to handle
Not as codified as conventional datasets
Can take various formats
Usually very messy

The most tedious part of text-data analysis is data cleaning
The key tool for that purpose is regular expressions
Today we're giving it a go by doing a sentiment analysis

➜ Let's do a sentiment analysis on Romeo and Juliet by Shakespeare

7 / 63

https://louissirugue.github.io/metrics_on_R/home.html

1. Cleaning text data

1.1. Exploring the data

The first step is to have a look at the data
For the type of data we work with today it is particularly easy: just open the .txt file in a notepad

➜ Open romeo_and_juliet.txt (you can view it here)

The .txt file is organized as follows
Some general information about the file
The table of contents
The dramatis personæ
The play
Some copyright considerations

Note that stage directions are mentioned [within brackets]

➜ To start working on it we should import the text in R

8 / 63

https://louissirugue.github.io/metrics_on_R/lecture6/shakespeare/romeo_and_juliet.txt
https://louissirugue.github.io/metrics_on_R/home.html

1. Cleaning text data

1.1. Exploring the data

The function to read .txt files is readLines()
Don't forget to specify the correct encoding
At the beggining of the file is indicated "Character set encoding: UTF-8"

raj <- readLines("shakespeare/romeo_and_juliet.txt", encoding = "UTF-8")

Let's take a look at how this file is stored:

summary(raj)

Length Class Mode
5640 character character

raj[1]

[1] "<U+FEFF>The Project Gutenberg eBook of Romeo and Juliet, by William Shakespeare"

9 / 63

https://louissirugue.github.io/metrics_on_R/home.html

1. Cleaning text data

1.1. Exploring the data

readLines() stored the data as a vector containing 5,640 strings, one for every line of the file
To handle the data conveniently, we should put it in a database format

raj <- tibble(line = raj)
head(raj, 10)

A tibble: 10 x 1
line
<chr>
1 "<U+FEFF>The Project Gutenberg eBook of Romeo and Juliet, by William Shakespeare"
2 ""
3 "This eBook is for the use of anyone anywhere in the United States and"
4 "most other parts of the world at no cost and with almost no restrictions"
5 "whatsoever. You may copy it, give it away or re-use it under the terms"
6 "of the Project Gutenberg License included with this eBook or online at"
7 "www.gutenberg.org. If you are not located in the United States, you"
8 "will have to check the laws of the country where you are located before"
9 "using this eBook."
10 ""

10 / 63

https://louissirugue.github.io/metrics_on_R/home.html

beginning

A tibble: 2 x 2
line line_number
<chr> <int>
1 ACT I 40
2 ACT I 144

There are indeed 2 occurrences of "ACT 1":
One at line 40 in the table of contents
And one at line 144 where the play starts

1. Cleaning text data

1.1. Exploring the data

Now we need to get rid of what comes before and after the play
The play starts at the second occurrence of "ACT I" (the first one being in the contents)
Let's identify the corresponding line and remove everything before that

First, let's store the row numbers of every line that states "ACT I":

beginning <- raj %>%
 mutate(line_number = row_number()) %>%
 filter(line == "ACT I")

11 / 63

https://louissirugue.github.io/metrics_on_R/home.html

1. Cleaning text data

1.1. Exploring the data

We can thus get rid of every line whose row number is below that of the second occurrence of "ACT 1":

raj <- raj %>% filter(row_number() >= beginning$line_number[2])
head(raj, 10)

A tibble: 10 x 1
line
<chr>
1 "ACT I"
2 ""
3 "SCENE I. A public place."
4 ""
5 " Enter Sampson and Gregory armed with swords and bucklers."
6 ""
7 "SAMPSON."
8 "Gregory, on my word, we’ll not carry coals."
9 ""
10 "GREGORY."

12 / 63

https://louissirugue.github.io/metrics_on_R/home.html

1. Cleaning text data

1.1. Exploring the data

Note that proceeding this ways allows to automatize the process for other plays
Looking at the line number in the data to remove what's before wouldn't be transposable
But this code can be applied directly to other plays (see macbeth, othello, ...)
We'll do so for the whole data cleaning so that we can clean other plays with virtually no additional code

What all plays have in common at the end is a final stage direction
Romeo and Juliet: [_Exeunt._]
Macbeth: [_Flourish. Exeunt._]
Othello: [_Exeunt._]
A midsummer night's dream: [_Exit._]
...

But how to get the line number of the final stage direction?
The last stage direction is not always the same
We need to use regular expressions!

13 / 63

https://louissirugue.github.io/metrics_on_R/lecture6/shakespeare/macbeth.txt
https://louissirugue.github.io/metrics_on_R/lecture6/shakespeare/othello_the_moor_of_venice.txt
https://louissirugue.github.io/metrics_on_R/home.html

1. Cleaning text data

1.2. Regular expressions

Regular expressions are used to identify strings that match a given pattern
Extremely useful tool when analyzing text data
Used in most programming languages, not specific to R

In practice regular expressions are strings of codified characters describing a pattern
For instance the character "^" indicates the start of the string
So the regular expression "^a" would match any "a" that is a the beginning of a string

Regular expressions in R can be used in different functions with different purposes:
grep: returns elements that match the regexp
grepl: returns TRUE for elements that match the regexp and FALSE otherwise
gsub: replaces the elements that match the regexp with what you want
...

➜ Let's play around with regexp to get the idea

14 / 63

https://louissirugue.github.io/metrics_on_R/home.html

1. Cleaning text data

1.2. Regular expressions

Consider the following vector:

txt <- c("One", "two", "three", "four", "5", "6", "7even", "Eight")

How to find all the elements that start with "t"?
We can use the regular expression "^t"
And use grepl to know for every element whether it matches this pattern or not

grepl("^t", txt)

[1] FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE

grepl("^th", txt)

[1] FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE

15 / 63

https://louissirugue.github.io/metrics_on_R/home.html

1. Cleaning text data

1.2. Regular expressions

Using grep instead or grepl will return the indices of the strings that match the pattern

grep("^f", txt)

[1] 4

Specifying value = TRUE will return the values instead of the indices

grep("^f", txt, value = T)

[1] "four"

Using gsub allows to replace the pattern by something else

gsub("^f", "4", txt)

[1] "One" "two" "three" "4our" "5" "6" "7even" "Eight"

16 / 63

https://louissirugue.github.io/metrics_on_R/home.html

Regexp Meaning

^ Start of string (or 'not')

$ End of string

. Any character

* 0 or more occurences

+ 1 or more occurences

{n} n occurences

{n,} n or more occurences

{n,m} between n and m occurences

Regexp Meaning

[] A range of characters

[^abc] Not a, b or c

[a-z] Any lowercase letter from a to z

[A-Z] Any capital letter from A to Z

[0-9] Any digit from 0 to 9

1. Cleaning text data

1.2. Regular expressions

17 / 63

https://louissirugue.github.io/metrics_on_R/home.html

grep("e$", txt)

[1] 1 3

grep(".e", txt)

[1] 1 3 7

grep(".e.", txt)

[1] 3 7

grep("[0-9]e", txt)

[1] 7

1. Cleaning text data

1.2. Regular expressions

Thus, if we do not want to replace only any "f" that is in first position but any string starting with "f"
"^f": f in first position
"^f.": f in first position followed by any character
"^f.+": f in first position followed by any occurrence of any character

gsub("^f.+", "4", txt)

[1] "One" "two" "three" "4" "5" "6" "7even" "Eight"

Other examples

txt <- c("One", "two", "three", "four", "5", "6", "7even", "Eight")

18 / 63

https://louissirugue.github.io/metrics_on_R/home.html

1. Cleaning text data

1.2. Regular expressions

It is also possible to use the logical operators & (and) and | (or)

grep("e$|o$", txt, value = T)

[1] "One" "two" "three"

To use symbols such as ^, $, ., & as characters instead of operators, they should be preceded by \\

grep("^^", c("^a", "b", "^c", "^d", "e", "f"), value = T)

[1] "^a" "b" "^c" "^d" "e" "f"

grep("^\\^", c("^a", "b", "^c", "^d", "e", "f"), value = T)

[1] "^a" "^c" "^d"

19 / 63

https://louissirugue.github.io/metrics_on_R/home.html

Practice

➜ Use grepl to create a variable that identifies every line that contains a (complete) stage direction

raj <- raj %>%
 mutate(direction = grepl("....", line))

Remember that stage directions are in brackets []

Read the play

raj <- tibble(line = readLines("shakespeare/romeo_and_juliet.txt", encoding = "UTF-8"))

Identify the lines "ACT I"

beginning <- raj %>%
 mutate(line_number = row_number()) %>%
 filter(line == "ACT I")

Remove everything before the second occurence

raj <- raj %>% filter(row_number() >= beginning$line_number[2])

You've got 10 minutes!
20 / 63

10:00

Solution

Basically we're looking for strings containing "[something]"
The "[" and "]" symbols should be preceded by "\\"
And the "something" translates into ".+", i.e., any character any number of times

raj <- raj %>%
 mutate(direction = grepl("\\[.+\\]", line))

head(raj %>% filter(direction), 8)

A tibble: 8 x 2
line direction
<chr> <lgl>
1 " [_They fight._]" TRUE
2 " [_Beats down their swords._]" TRUE
3 " [_They fight._]" TRUE
4 " [_Exeunt Montague and Lady Montague._]" TRUE
5 " [_Going._]" TRUE
6 " [_Exeunt._]" TRUE
7 "Whose names are written there, [_gives a paper_] and to them say," TRUE
8 " [_Exeunt Capulet and Paris._]" TRUE

21 / 63

1. Cleaning text data

1.2. Regular expressions

We can now find the last stage direction

end <- raj %>% # Do the computations separately for stage direction lines and other lines
 group_by(direction) %>%

 mutate(last_obs = row_number() == n()) %>% # Mark the last row of each group with TRUE

 ungroup() %>% # Ungroup the data

 mutate(line_number = row_number()) %>% # Create a line_number variable

 filter(direction & last_obs) # Keep the last stage direction

end

A tibble: 1 x 4
line direction last_obs line_number
<chr> <lgl> <lgl> <int>
1 " [_Exeunt._]" TRUE TRUE 5141

22 / 63

https://louissirugue.github.io/metrics_on_R/home.html

1. Cleaning text data

1.2. Regular expressions

raj <- raj %>% filter(row_number() <= end$line_number)

The play is now properly delimited:

kable(head(raj, 5), "Start of the play")

Start of the play
line direction

ACT I FALSE

FALSE

SCENE I. A public place. FALSE

FALSE

Enter Sampson and Gregory armed with swords and bucklers. FALSE

23 / 63

https://louissirugue.github.io/metrics_on_R/home.html

End of the play
line direction

A glooming peace this morning with it brings; FALSE

The sun for sorrow will not show his head. FALSE

Go hence, to have more talk of these sad things. FALSE

Some shall be pardon’d, and some punished, FALSE

For never was a story of more woe FALSE

Than this of Juliet and her Romeo. FALSE

FALSE

[_Exeunt._] TRUE

We should also remove empty lines:

raj <- raj %>% filter(line != "")

1. Cleaning text data

1.2. Regular expressions

kable(tail(raj, 8), "End of the play")

24 / 63

https://louissirugue.github.io/metrics_on_R/home.html

1. Cleaning text data

1.3. Tokenization

But the data is not ready yet, we need to tokenize it first
Tokenization is the fact of cleaning the data so that there is one unit of text per row
Like in a regular database where each row corresponds to an observation

A token (unit of text) can be:
A character
A letter
A word
A sentence
etc.

In our case it would be great to tokenize the data at the line level, documenting for each line:
The corresponding act
The corresponding scene
The corresponding character

25 / 63

https://louissirugue.github.io/metrics_on_R/home.html

1. Cleaning text data

1.3. Tokenization

We can start by identifying the act and scene delimiters

raj <- raj %>%
 mutate(act_delim = grepl("^ACT", line),
 scene_delim = grepl("^SCENE", line))

Identifying the line delimiters is more complicated:
There's no systematic word like "ACT" or "SCENE"
But they have the specificity to be in uppercase and to end with a dot
They can also contain a space and the character ’

raj <- raj %>%
 mutate(line_delim = grepl("^[A-Z ’]*\\.$", line))

➜ We should check it worked

26 / 63

https://louissirugue.github.io/metrics_on_R/home.html

1. Cleaning text data

1.3. Tokenization

datatable(raj %>% filter(act_delim|scene_delim), options = list(pageLength = 6))

Show 6 entries Search:

Showing 1 to 6 of 29 entries Previous 1 2 3 4 5 Next

line direction act_delim scene_delim line_delim

1 ACT I false true false false

2 SCENE I. A public place. false false true false

3 SCENE II. A Street. false false true false

4 SCENE III. Room in Capulet’s House. false false true false

5 SCENE IV. A Street. false false true false

6 SCENE V. A Hall in Capulet’s House. false false true false

27 / 63

https://louissirugue.github.io/metrics_on_R/home.html

1. Cleaning text data

1.3. Tokenization

We indeed observe the same table of contents as in the preamble here

What about the characters?
Let's compute the number of lines per character

raj %>%
Keep only the line delimiters (character names)

 filter(line_delim) %>%
Group by character

 group_by(line) %>%
Count the number of line (creates variable n)

 tally() %>%
Plot it

 ggplot(., aes(x = reorder(line, -n), y = n)) +
 geom_bar(stat = "identity") +
 xlab("Character") + ylab("Number of lines") +
 theme(axis.text.x = element_text(angle = 90))

28 / 63

https://louissirugue.github.io/metrics_on_R/lecture6/shakespeare/romeo_and_juliet.txt
https://louissirugue.github.io/metrics_on_R/home.html

1. Cleaning text data

1.3. Tokenization

29 / 63

https://louissirugue.github.io/metrics_on_R/home.html

1. Cleaning text data

1.3. Tokenization

kable(head(raj, 8), "Head of the data")

Head of the data
line direction act_delim scene_delim line_delim

ACT I FALSE TRUE FALSE FALSE

SCENE I. A public place. FALSE FALSE TRUE FALSE

Enter Sampson and Gregory armed with swords and bucklers. FALSE FALSE FALSE FALSE

SAMPSON. FALSE FALSE FALSE TRUE

Gregory, on my word, we’ll not carry coals. FALSE FALSE FALSE FALSE

GREGORY. FALSE FALSE FALSE TRUE

No, for then we should be colliers. FALSE FALSE FALSE FALSE

SAMPSON. FALSE FALSE FALSE TRUE

30 / 63

https://louissirugue.github.io/metrics_on_R/home.html

1. Cleaning text data

1.3. Tokenization

We managed to identify the indicators of act/scene/line
But the data is not tokenized
We want one row per line
And the corresponding act/scene/character of each line

One way to do that would be to:
Start counters of act/scene/line
Go through each row of the data
Each time we cross a marker, increase the counter

We can create empty variables that we will fill in progressively:

raj <- raj %>%
 mutate(id_act = NA,
 id_scene = NA,
 id_line = NA,
 id_char = NA)

31 / 63

https://louissirugue.github.io/metrics_on_R/home.html

1. Cleaning text data

1.3. Tokenization

These vectors should be filled row after row with the corresponding values
We should first initialize the counters that we will update each time we pass a marker

temp_act <- 0
temp_scene <- 0
temp_line <- 0
temp_char <- ""

We're all set to start the loop

for (i in 1:nrow(raj)) {

Update counters

if (raj[i, "act_delim"] == TRUE) { }
if (raj[i, "scene_delim"] == TRUE) { }
if (raj[i, "line_delim"] == TRUE) { }

Fill the vectors

32 / 63

https://louissirugue.github.io/metrics_on_R/home.html

1. Cleaning text data

1.3. Tokenization

Each time we pass an act marker we should
Increase the act counter
Reset the scene counter
Reset the line counter

for (i in 1:nrow(raj)) {

if (raj[i, "act_delim"] == TRUE) {
 temp_act <- temp_act + 1
 temp_scene <- 0
 temp_line <- 0
 }

The same applies to the scene/line/character counters

After what every updated counter should be stored in its vector

33 / 63

https://louissirugue.github.io/metrics_on_R/home.html

1. Cleaning text data

1.3. Tokenization

Update counters each time we pass a scene/line marker and store all counters

if (raj[i, "scene_delim"] == TRUE) {
 temp_scene <- temp_scene + 1
 temp_line <- 0
 }
if (raj[i, "line_delim"] == TRUE) {

 temp_line <- temp_line + 1
 temp_char <- gsub(pattern = "\\.$", "", raj[i, "line"])
 }

 raj[i, "id_act"] <- temp_act
 raj[i, "id_scene"] <- temp_scene
 raj[i, "id_line"] <- temp_line
 raj[i, "id_char"] <- temp_char
}

kable(head(raj, 7), caption = "")

34 / 63

https://louissirugue.github.io/metrics_on_R/home.html

1. Cleaning text data

1.3. Tokenization

line direction act_delim scene_delim line_delim id_act id_scene id_line id_char

ACT I FALSE TRUE FALSE FALSE 1 0 0

SCENE I. A public place. FALSE FALSE TRUE FALSE 1 1 0

Enter Sampson and
Gregory armed with
swords and bucklers.

FALSE FALSE FALSE FALSE 1 1 0

SAMPSON. FALSE FALSE FALSE TRUE 1 1 1 SAMPSON

Gregory, on my word, we’ll
not carry coals. FALSE FALSE FALSE FALSE 1 1 1 SAMPSON

GREGORY. FALSE FALSE FALSE TRUE 1 1 2 GREGORY

No, for then we should be
colliers. FALSE FALSE FALSE FALSE 1 1 2 GREGORY

35 / 63

https://louissirugue.github.io/metrics_on_R/home.html

1. Cleaning text data

1.3. Tokenization

We can now keep only the rows whose line id is positive
It removes everything that comes before the first line of a scene such as act and scene indicators

And remove all the rows indicating the characters
Because we now have a column indicating the corresponding character for each line

raj <- raj %>% filter(id_line > 0 & !line_delim)
kable(head(raj, 3), "")

line direction act_delim scene_delim line_delim id_act id_scene id_line id_char

Gregory, on my word, we’ll
not carry coals. FALSE FALSE FALSE FALSE 1 1 1 SAMPSON

No, for then we should be
colliers. FALSE FALSE FALSE FALSE 1 1 2 GREGORY

I mean, if we be in choler,
we’ll draw. FALSE FALSE FALSE FALSE 1 1 3 SAMPSON

36 / 63

https://louissirugue.github.io/metrics_on_R/home.html

1. Cleaning text data

1.3. Tokenization

But there are still lines spanning on multiple rows
We need to paste together all the rows that correspond to a same line
We can use group_by(id_act, id_scene, id_line) to do the operation for each line
And use paste() in the summarise() function to paste all the rows of a given line

raj <- raj %>%
Do the computations separately for each line

 group_by(id_act, id_scene, id_line, id_char) %>%
Paste together all the rows of each line

 summarise(line = paste(line, collapse = " ")) %>%
Ungroup the data for future computations

 ungroup()

Let's browse the data

datatable(raj, options = list(pageLength = 5))

37 / 63

https://louissirugue.github.io/metrics_on_R/home.html

1. Cleaning text data

1.3. Tokenization

Show 5 entries Search:

Showing 1 to 5 of 837 entries Previous 1 2 3 4 5 … 168 Next

id_act id_scene id_line id_char line

1 1 1 1 SAMPSON Gregory, on my word, we’ll not carry coals.

2 1 1 2 GREGORY No, for then we should be colliers.

3 1 1 3 SAMPSON I mean, if we be in choler, we’ll draw.

4 1 1 4 GREGORY Ay, while you live, draw your neck out o’ the collar.

5 1 1 5 SAMPSON I strike quickly, being moved.

38 / 63

https://louissirugue.github.io/metrics_on_R/home.html

1. Cleaning text data

1.3. Tokenization

The last thing to do is to remove stage directions

Example:

kable(raj %>% filter(id_act == 1 & id_scene == 2 & id_line == 18), caption = "")

id_act id_scene id_line id_char line

1 2 18 ROMEO

Stay, fellow; I can read. [_He reads the letter._] _Signior Martino and his wife
and daughters; County Anselmo and his beauteous sisters; The lady widow of
Utruvio; Signior Placentio and his lovely nieces; Mercutio and his brother
Valentine; Mine uncle Capulet, his wife, and daughters; My fair niece Rosaline
and Livia; Signior Valentio and his cousin Tybalt; Lucio and the lively Helena. _
A fair assembly. [_Gives back the paper_] Whither should they come?

39 / 63

https://louissirugue.github.io/metrics_on_R/home.html

1. Cleaning text data

1.3. Tokenization

We can do it using the gsub() function
Let's try with the regexp we used to detect stage directions

raj %>%
 mutate(line = gsub("\\[.+\\]", "", line)) %>%
 filter(id_act == 1 & id_scene == 2 & id_line == 18) %>%
 kable(., caption = "")

id_act id_scene id_line id_char line

1 2 18 ROMEO Stay, fellow; I can read. Whither should they come?

It removed everything between the first [and the last] of the line
But we want it to remove the two stage directions separately

We should change "any character": "."
By "not [nor]": "[^\\[\\]]"

40 / 63

https://louissirugue.github.io/metrics_on_R/home.html

1. Cleaning text data

1.3. Tokenization

raj <- raj %>%
 mutate(line = gsub("\\[[^\\[\\]+\\]", "", line))

kable(raj %>% filter(id_act == 1 & id_scene == 2 & id_line == 18), caption = "")

id_act id_scene id_line id_char line

1 2 18 ROMEO

Stay, fellow; I can read. _Signior Martino and his wife and daughters; County
Anselmo and his beauteous sisters; The lady widow of Utruvio; Signior
Placentio and his lovely nieces; Mercutio and his brother Valentine; Mine uncle
Capulet, his wife, and daughters; My fair niece Rosaline and Livia; Signior
Valentio and his cousin Tybalt; Lucio and the lively Helena. _ A fair assembly.
Whither should they come?

➜ It worked, we're finally done

41 / 63

https://louissirugue.github.io/metrics_on_R/home.html

Overview

1. Cleaning text data ✔
1.1. Exploring the data
1.2. Regular expressions
1.3. Tokenization

2. Sentiment analysis
2.1. Stopwords
2.2. Sentiments
2.3. Analysis

4. Wrap up!

42 / 63

https://louissirugue.github.io/metrics_on_R/home.html

Overview

1. Cleaning text data ✔
1.1. Exploring the data
1.2. Regular expressions
1.3. Tokenization

2. Sentiment analysis
2.1. Stopwords
2.2. Sentiments
2.3. Analysis

43 / 63

https://louissirugue.github.io/metrics_on_R/home.html

2. Sentiment analysis

2.1. Stopwords

We now have clean data at the line level
But sentiment analyses are usually performed at the word level
The idea is to use a dictionary that attributes a sentiment to each (some) words

➜ To tokenize our data at the word level, we can use the unnest_token() function from the tidytext package
It will attribute one row to each word of each line
Put everything in lower case
And remove punctuation

library("tidytext")
raj <- raj %>%
 mutate(to_unnest = line) %>%
 unnest_tokens(token = "words", input = to_unnest, output = word)

Let's have a look

kable(head(raj, 9), "Unnested data")

44 / 63

https://louissirugue.github.io/metrics_on_R/home.html

2. Sentiment analysis

2.1. Stopwords

Unnested data
id_act id_scene id_line id_char line word

1 1 1 SAMPSON Gregory, on my word, we’ll not carry coals. gregory

1 1 1 SAMPSON Gregory, on my word, we’ll not carry coals. on

1 1 1 SAMPSON Gregory, on my word, we’ll not carry coals. my

1 1 1 SAMPSON Gregory, on my word, we’ll not carry coals. word

1 1 1 SAMPSON Gregory, on my word, we’ll not carry coals. we’ll

1 1 1 SAMPSON Gregory, on my word, we’ll not carry coals. not

1 1 1 SAMPSON Gregory, on my word, we’ll not carry coals. carry

1 1 1 SAMPSON Gregory, on my word, we’ll not carry coals. coals

1 1 2 GREGORY No, for then we should be colliers. no

45 / 63

https://louissirugue.github.io/metrics_on_R/home.html

2. Sentiment analysis

2.1. Stopwords

The first step of a sentiment analysis is usually to get rid of stopwords
Stopwords are common words that do not carry much semantic meaning
These words take space and computing time without adding to the analysis, so we drop them

➜ We can use the list of stopwords from the tidytext package with get_stopwords()

get_stopwords()[["word"]][1:50]

[1] "i" "me" "my" "myself" "we"
[6] "our" "ours" "ourselves" "you" "your"
[11] "yours" "yourself" "yourselves" "he" "him"
[16] "his" "himself" "she" "her" "hers"
[21] "herself" "it" "its" "itself" "they"
[26] "them" "their" "theirs" "themselves" "what"
[31] "which" "who" "whom" "this" "that"
[36] "these" "those" "am" "is" "are"
[41] "was" "were" "be" "been" "being"
[46] "have" "has" "had" "having" "do"

46 / 63

https://louissirugue.github.io/metrics_on_R/home.html

2. Sentiment analysis

2.1. Stopwords

We want to remove every row that corresponds to a stopword to reduce the dimensionality of the data

nrow(raj)

[1] 24156

We can do so using the anti_join() function:

raj <- raj %>%
 anti_join(get_stopwords())

nrow(raj)

[1] 13037

➜ It reduced the number of rows by almost half!

47 / 63

https://louissirugue.github.io/metrics_on_R/home.html

Some stopwords remained, in
particular archaic pronouns that
were not in our list such as thou,
thy, thee, ...

But we can already see that love,
Romeo, night, death, are among
the most frequent words in the
play

2. Sentiment analysis

2.1. Stopwords

Here are the 50 most common words in the piece after removing the stopwords from the list

48 / 63

https://louissirugue.github.io/metrics_on_R/home.html

head(get_sentiments("bing"))

A tibble: 6 x 2
word sentiment
<chr> <chr>
1 2-faces negative
2 abnormal negative
3 abolish negative
4 abominable negative
5 abominably negative
6 abominate negative

unique(get_sentiments("bing")[["sentiment"]])

[1] "negative" "positive"

unique(get_sentiments("nrc")[["sentiment"]])

[1] "trust" "fear" "negative"
[6] "surprise" "positive" "disgust"

2. Sentiment analysis

2.2. Sentiments

The next step is to join the words to their corresponding sentiments using a dictionary
Some dictionaries are very simple: positive/negative
And some are more elaborate: trust/fear/sadness/anger/...

The tidytext packages contains several sentiment dictionaries:

49 / 63

https://louissirugue.github.io/metrics_on_R/home.html

2. Sentiment analysis

2.2. Sentiments

We're gonna use the afinn dictionary that rates words with integers from -5 (negative) to 5 (positive)

raj <- raj %>% left_join(get_sentiments("afinn"))
summary(raj$value)

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
-5.000 -2.000 1.000 0.258 2.000 4.000 11172

Notice that most words have no associated sentiment

➜ Let's start by computing the average sentiment for the main characters

raj %>% group_by(id_char) %>%
 summarise(mean = mean(value, na.rm = T), n_words = n()) %>% filter(n_words > 100) %>%
 ggplot(., aes(x = reorder(id_char, -mean), y = mean)) +
 geom_bar(stat = "identity", fill = "#6794A7", color = "#014D64", alpha = .8) +
 theme(axis.text.x = element_text(angle = 90)) + xlab("")

50 / 63

https://louissirugue.github.io/metrics_on_R/home.html

2. Sentiment analysis

2.3. Analysis

Average sentiment for the main characters

51 / 63

https://louissirugue.github.io/metrics_on_R/home.html

2. Sentiment analysis

2.3. Analysis

We can also look at the sentiment of the lines of the main characters when they mention other characters

raj %>%
 filter(id_char %in% c("ROMEO", "JULIET", "NURSE")) %>%
 group_by(id_char) %>%
 summarise(about_romeo = mean(ifelse(grepl(pattern = "Romeo", line), value, NA), na.rm = T),
 about_juliet = mean(ifelse(grepl(pattern = "Juliet", line), value, NA), na.rm = T),
 about_nurse = mean(ifelse(grepl(pattern = "Nurse", line), value, NA), na.rm = T)) %>%
 kable(., caption = "Crossed sentiments")

Crossed sentiments
id_char about_romeo about_juliet about_nurse

JULIET -0.26 -1.50 0.25

NURSE 0.83 -0.27 0.11

ROMEO -0.74 -0.07 2.40

52 / 63

https://louissirugue.github.io/metrics_on_R/home.html

➜ Not a happy end

raj %>%
 group_by(id_act, id_scene) %>%
 summarise(
 mean = mean(value, na.rm = T)
) %>% ungroup() %>%
 mutate(scene = row_number()) %>%
 ggplot(aes(x = scene,y = mean))+
 geom_bar(stat = 'identity',
 fill = "#6794A7",
 color = "#014D64",
 alpha = .8)

2. Sentiment analysis

2.3. Analysis

We can also look at the evolution of the sentiment over the play

53 / 63

https://louissirugue.github.io/metrics_on_R/home.html

2. Sentiment analysis

2.3. Analysis

We can put our code into a function and apply it to other plays
Create a function sentiment_evolution() that takes the file name as an argument
And that return the evolution of positivity over the play as the output
See the code here

This function can then be applied to different plays of Shakespeare:

plays <- c("a_midsummer_nights_dream.txt", "macbeth.txt",
"othello_the_moor_of_venice.txt", "romeo_and_juliet.txt",
"the_merchant_of_venice.txt", "the_taming_of_the_shrew.txt",
"the_tragedy_of_king_lear.txt", "the_winters_tale.txt")

for (file in plays) {
 sentiment_evolution(file)
}

54 / 63

https://louissirugue.github.io/metrics_on_R/lecture6/sentiment_evolution.txt
https://louissirugue.github.io/metrics_on_R/home.html

2. Sentiment analysis

2.3. Analysis

55 / 63

https://louissirugue.github.io/metrics_on_R/home.html

2. Sentiment analysis

2.3. Analysis

56 / 63

https://louissirugue.github.io/metrics_on_R/home.html

2. Sentiment analysis

2.3. Analysis

57 / 63

https://louissirugue.github.io/metrics_on_R/home.html

2. Sentiment analysis

2.3. Analysis

58 / 63

https://louissirugue.github.io/metrics_on_R/home.html

Overview

1. Cleaning text data ✔
1.1. Exploring the data
1.2. Regular expressions
1.3. Tokenization

2. Sentiment analysis ✔
2.1. Stopwords
2.2. Sentiments
2.3. Analysis

4. Wrap up!

59 / 63

https://louissirugue.github.io/metrics_on_R/home.html

Regular expressions are strings of codified
characters describing a pattern

For instance the character "^" indicates the
start of the string
So the regular expression "^a" would match
any "a" that is a the beginning of a string

Regular expressions in R can be used in different
functions with different purposes:

grep: return elements that match the regexp
grepl: return TRUE for elements that match
the regexp and FALSE otherwise
gsub: replace the elements that match the
regexp with what you want

Regexp Meaning

^ Start of string (or 'not')

$ End of string

. Any character

* 0 or more occurences

+ 1 or more occurences

[^abc] Not a, b or c

[a-z] Any lowercase letter from a to z

[A-Z] Any capital letter from A to Z

[0-9] Any digit from 0 to 9

3. Wrap up!

1. Regular expressions

60 / 63

https://louissirugue.github.io/metrics_on_R/home.html

line direction

ACT I FALSE

SCENE I. A public place. FALSE

Enter Sampson and Gregory armed with
swords and bucklers. FALSE

SAMPSON. FALSE

Gregory, on my word, we’ll not carry
coals. FALSE

GREGORY. FALSE

No, for then we should be colliers. FALSE

id_act id_scene id_line id_char line

1 1 1 SAMPSON

Gregory, on
my word, we’ll
not carry
coals.

1 1 2 GREGORY
No, for then
we should be
colliers.

1 1 3 SAMPSON
I mean, if we
be in choler,
we’ll draw.

3. Wrap up!

2. Tokenization

Tokenization is the fact of cleaning the data so that there is one unit of text per row
A unit of text (token) can be a character, a letter, a word, a sentence, etc.

61 / 63

https://louissirugue.github.io/metrics_on_R/home.html

First step: get rid of stopwords
Stopwords are common words that do not
carry much semantic meaning but take space
and computing time

matrix(get_stopwords()[["word"]][1:24],ncol=3)

[,1] [,2] [,3]
[1,] "i" "you" "himself"
[2,] "me" "your" "she"
[3,] "my" "yours" "her"
[4,] "myself" "yourself" "hers"
[5,] "we" "yourselves" "herself"
[6,] "our" "he" "it"
[7,] "ours" "him" "its"
[8,] "ourselves" "his" "itself"

Second step: join sentiments dictionary
Some dictionaries are very simple:
positive/negative
And some are more elaborate:
trust/fear/sadness/anger/...

head(get_sentiments("bing"), 5)

A tibble: 5 x 2
word sentiment
<chr> <chr>
1 2-faces negative
2 abnormal negative
3 abolish negative
4 abominable negative
5 abominably negative

3. Wrap up!

3. Stopwords and sentiments

62 / 63

https://louissirugue.github.io/metrics_on_R/home.html

Evolution of the average sentiment over the play
Sentiment of characters (rows)
when mentioning other
characters (columns)

A tibble: 3 x 4
id_char ROMEO JULIET NURSE
<chr> <dbl> <dbl> <dbl>
1 JULIET -0.255 -1.5 0.246
2 NURSE 0.826 -0.267 0.111
3 ROMEO -0.737 -0.0746 2.4

3. Wrap up!

4. Analysis

63 / 63

https://louissirugue.github.io/metrics_on_R/home.html

