Univariate regressions

Lecture 8

Louis SIRUGUE
CPES 2 - Fall 2022

Part I recap

Import data

```
fb <- read.csv("C:/User/Documents/ligue1.csv", encoding = "UTF-8")
```


Class

```
is.numeric("1.6180339") # What would be the output?
```

\#\# [1] FALSE

Subsetting

fb\$Home [3]

\#\# [1] "Troyes"

Part I recap

Distributions

- The distribution of a variable documents all its possible values and how frequent they are

Density

- We can describe a distribution with:

Part I recap

Distributions

- The distribution of a variable documents all its possible values and how frequent they are

Density
- We can describe a distribution with:
- Its central tendency

Part I recap

Distributions

- The distribution of a variable documents all its possible values and how frequent they are

- We can describe a distribution with:
- Its central tendency
- And its spread

Part I recap

Central tendency

- The mean is the sum of all values divided by the number of observations

$$
\bar{x}=\frac{1}{N} \sum_{i=1}^{N} x_{i}
$$

Spread

- The standard deviation is square root of the average squared deviation from the mean

$$
\mathrm{SD}(x)=\sqrt{\operatorname{Var}(x)}=\sqrt{\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}}
$$

- The median is the value that divides the (sorted) distribution into two groups of equal size

$$
\operatorname{Med}(x)= \begin{cases}x\left[\frac{N+1}{2}\right] & \text { if } N \text { is odd } \\ \frac{x\left[\frac{N}{2}\right]+x\left[\frac{N}{2}+1\right]}{2} & \text { if } N \text { is even }\end{cases}
$$

- The interquartile range is the difference between the maximum and the minimum value from the middle half of the distribution

$$
\mathrm{IQR}=Q_{3}-Q_{1}
$$

Part I recap

Inference

- In Statistics, we view variables as a given realization of a data generating process
- Hence, the mean is what we call an empirical moment, which is an estimation...
- ... of the expected value, the theoretical moment of the DGP we're interested in
- To know how confident we can be in this estimation, we need to compute a confidence interval

$$
\left[\bar{x}-t_{n-1,97.5 \%} \times \frac{\mathrm{SD}(x)}{\sqrt{n}} ; \bar{x}+t_{n-1,97.5 \%} \times \frac{\mathrm{SD}(x)}{\sqrt{n}}\right]
$$

- It gets larger as the variance of the distribution of x increases
- And gets smaller as the sample size n increases

Part I recap

Packages

```
library(dplyr)
```


Main dplyr functions

Function	Meaning
mutate()	Modify or create a variable
select()	Keep a subset of variables
filter()	Keep a subset of observations
arrange()	Sort the data
group_by()	Group the data
summarise()	Summarizes variables into 1 observation per group

Part I recap

Merge data

```
a <- data.frame(x = c(1, 2, 3), y = c("a", "b", "c"))
b <- data.frame(x = c(4, 5, 6), y = c("d", "e", "f"))
c <- data.frame(x = 1:6, z = c("alpha", "bravo", "charlie", "delta", "echo", "foxtrot"))
```

a \%>\% bind_rows(b) \%>\% left_join(c, by = "x")

x	y	z
1	a	alpha
2	b	bravo
3	c	charlie
4	d	delta
5	e	echo
6	f	foxtrot

Part I recap

Reshape data

country	year	share_tertiary	share_gdp
FRA	2015	44.69	3.40
USA	2015	46.52	3.21

data \%>\% pivot_longer(c(share_tertiary, share_gdp), names_to = "Variable", values_to = "Value")

country	year	Variable	Value
FRA	2015	share_tertiary	44.69
FRA	2015	share_gdp	3.40
USA	2015	share_tertiary	46.52
USA	2015	share_gdp	3.21

Part I recap

The 3 core components of the ggplot() function

Component	Contribution	Implementation
Data	Underlying values	ggplot(data, \| data \%>\% ggplot(.,
Mapping	Axis assignment	$\operatorname{aes}(\mathrm{x}=\mathrm{V} 1, \mathrm{y}=\mathrm{V} 2, \ldots))$
Geometry	Type of plot	+ geom_point($)+$ geom_line ()$+\ldots$

- Any other element should be added with a + sign

```
ggplot(data, aes(x = V1, y = V2)) +
    geom_point() + geom_line() +
    anything_else()
```


Part I recap

Main types of geometry
Main customization tools

Item to customize	Main functions
Axes	scale_[x/y]_[continuous/discrete]
Baseline theme	theme_[void/minimal/.../dark]()
Annotations	geom_[[h/v]line/text](), annotate()
Theme	theme(axis.[line/ticks].[x/y] = ...,

Geometry	Function
Bar plot	geom_bar()
Histogram	geom_histogram()
Area	geom_area()
Line	geom_line()
Density	geom_density()
Boxplot	geom_boxplot()
Violin	geom_violin()
Scatter plot	geom_point()

Part I recap

Main types of aesthetics

Argument	Meaning
alpha	opacity from 0 to 1
color	color of the geometry
fill	fill color of the geometry
size	size of the geometry
shape	shape for geometries like points
linetype	solid, dashed, dotted, etc.

- If specified in the geometry
- It will apply uniformly to every all the geometry
- If assigned to a variable in aes
- it will vary with the variable according to a scale documented in legend

```
ggplot(data, aes(x = V1, y = V2, size = V3)) +
    geom_point(color = "steelblue", alpha = .6)
```


Part I recap

R Markdown: Three types of content

Report example

Louis Sirugue
26/09/2021
YAML header
Overview of the data
\# Omit if distance >= 100
cars <- cars[cars\$dist <100,
names (cars)
\#\# [1] "speed" "dist"
dim(cars)
\#\# [1] 49 2

C (mean(cars\$speed), mean(cars\$dist))
\#\# [1] 15.2244941 .40816
The dataset we consider contains two variables, speed and distance, and has 49 observations. The average speed value is 15.2244898 and the average distance value is 41.4081633.

Part I recap

Useful features

\rightarrow Inline code allows to include the output of some \mathbf{R} code within text areas of your report

```
Syntax
`paste("a", "b", sep = "-")`
`r paste("a", "b", sep = "-")`
paste("a", "b", sep = "-")
a-b
```

\rightarrow kable() for clean html tables and datatable() to navigate in large tables

```
kable(results_table)
datatable(results_table)
```


Part I recap

LaTeX for equations

- $L T_{E} X$ is a convenient way to display mathematical symbols and to structure equations
- The syntax is mainly based on backslashes \backslash and braces $\}$
\rightarrow What you type in the text area: $\$ x$ \neq \frac\{\alpha \times \beta\}\{2\}\$
\rightarrow What is rendered when knitting the document: $x \neq \frac{\alpha \times \beta}{2}$

To include a LaTeX equation in R Markdown, you simply have to surround it with the \$ sign

The mean formula with one \$ on each side
\rightarrow For inline equations
$\bar{x}=\frac{1}{N} \sum_{i=1}^{N} x_{i}$

The mean formula with two \$ on each side
\rightarrow For large/emphasized equations

$$
\bar{x}=\frac{1}{N} \sum_{i=1}^{N} x_{i}
$$

Today: We start Econometrics!

1. Joint distributions

1.1. Definition
1.2. Covariance
1.3. Correlation
2. Univariate regressions
2.1. Introduction to regressions
2.2. Coefficients estimation

3. Binary variables

3.1. Binary dependent variables
3.2. Binary independent variables

4. Wrap up!

Today: We start Econometrics!

1. Joint distributions
1.1. Definition
1.2. Covariance
1.3. Correlation

1. Joint distributions

1.1. Definition

- The joint distribution shows the values and associated frequencies for two variables simultaneously
- Remember how the density could represent the distribution of a single variable

1. Joint distributions

1.1. Definition

- The joint distribution shows the values and associated frequencies for two variables simultaneously
- Remember how the density could represent the distribution of a single variable
- The joint density can represent the joint distribution of two variables

1. Joint distributions

1.2. Covariance

- When describing a single distribution, we're interested in its spread and central tendency
- When describing a joint distribution, we're interested in the relationship between the two variables
- This can be characterized by the covariance

$$
\operatorname{Cov}(x, y)=\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)
$$

If \boldsymbol{y} tends to be large relative to its mean when \boldsymbol{x} is large relative to its mean, their covariance is positive

Conversely, if one tends to be large when the other tends to be low, the covariance is negative

1. Joint distributions

1.2. Covariance

1. Joint distributions

1.2. Covariance

$$
\begin{aligned}
\operatorname{Cov}(X, a)= & 0 \\
\operatorname{Cov}(X, X)= & \operatorname{Var}(X) \\
\operatorname{Cov}(X, Y)= & \operatorname{Cov}(Y, X) \\
\operatorname{Cov}(a X, b Y)= & a b \operatorname{Cov}(X, Y) \\
\operatorname{Cov}(X+a, Y+b)= & \operatorname{Cov}(X, Y) \\
\operatorname{Cov}(a X+b Y, c W+d Z)= & a c \operatorname{Cov}(X, W)+a d \operatorname{Cov}(X, Z)+ \\
& b c \operatorname{Cov}(Y, W)+b d \operatorname{Cov}(Y, Z)
\end{aligned}
$$

1. Joint distributions

1.3. Correlation

- One disadvantage of the covariance is that is it not standardized
- You cannot directly compare the covariance of two pairs of completely different variables
- Given distance variables will have a larger covariance in centimeters than in meters
\rightarrow Theoretically the covariance can take values from $-\infty$ to $+\infty$
- To net out the covariance from the unit of the data, we can divide it by $\mathrm{SD}(x) \times \mathrm{SD}(y)$
- We call this standardized measure the correlation
- Correlations coefficients are comparable because they are independent from the unit of the data

$$
\operatorname{Corr}(x, y)=\frac{\operatorname{Cov}(x, y)}{\operatorname{SD}(x) \times \operatorname{SD}(y)}
$$

\rightarrow The correlation coefficient is bounded between values from -1 to 1

1. Joint distributions

1.3. Correlation

1. Joint distributions

\rightarrow But a same correlation can hide very different relationships

1. Joint distributions

\rightarrow Covariance and correlation in R

```
x <- c(50, 70, 60, 80, 60)
y <- c(10, 30, 20, 30, 40)
```

- The covariance can be obtain with the function cov ()

```
cov(x,y)
```

\#\# [1] 70

- The correlation can be obtain with the function cor ()

```
cor(x, y)
```

\#\# [1] 0.5384615

Overview

1. Joint distributions $\sqrt{ }$

1.1. Definition
1.2. Covariance
1.3. Correlation
2. Univariate regressions
2.1. Introduction to regressions
2.2. Coefficients estimation

3. Binary variables

3.1. Binary dependent variables
3.2. Binary independent variables

4. Wrap up!

Overview

1. Joint distributions \checkmark

1.1. Definition
1.2. Covariance
1.3. Correlation

2. Univariate regressions

2.1. Introduction to regressions
2.2. Coefficients estimation

2. Univariate regressions

2.1. Introduction to regressions

- Consider the following dataset

```
ggcurve <- read.csv("ggcurve.csv")
kable(head(ggcurve, 5), "First 5 rows")
```

First 5 rows
country ige gini
Denmark 0.150 .38

| Norway | 0.17 | 0.33 |
| :--- | :--- | :--- | :--- |

Finland 0.180 .38
Canada 0.190 .46
Australia 0.260 .44

The data contains $\mathbf{2}$ variables at the country level:

1. IGE: Intergenerational elasticity, which captures the \% average increase in child income for a 1% increase in parental income
2. Gini: Gini index of income inequality between 0 : everybody has the same income
1: a single individual has all the income

2. Univariate regressions

2.1. Introduction to regressions

- To investigate the relationship between these two variables we can start with a scatterplot

```
ggplot(ggcurve , aes(x = gini, y = ige, label = country)) + geom_text()
```


2. Univariate regressions

2.1. Introduction to regressions

- We see that the two variables are positively correlated with each other:
- When one tends to be high relative to its mean, the other as well
- When one tends to be low relative to its mean, the other as well

```
cor(ggcurve$gini, ggcurve$ige)
```

\#\# [1] 0.6517277

- The correlation coefficient is equal to . 65
- Remember that the correlation can take values from -1 to 1
- Here the correlation is indeed positive and fairly strong
- But how useful is this for real-life applications? We may want more practical information:
- Like by how much y is expected to increase for a given change in x
- This is of particular interest for economists and policy makers

2. Univariate regressions

2.1. Introduction to regressions

- Consider these two relationships :

Relationship 1

\rightarrow One is less noisy but flatter
\rightarrow One is noisier but steeper

Both have a correlation of .75

2. Univariate regressions

2.1. Introduction to regressions

- Consider these two relationships :

Relationship 1

But a given increase in x is not associated with a same increase in y!

2. Univariate regressions

2.1. Introduction to regressions

- Knowing that income inequality is negatively correlated with intergenerational mobility is one thing
- But how much more intergenerational mobility could we expect for a given reduction in inequality?
- We need to characterize the "steepness" of the relationship!
- It is usually the type of questions we're interested in:
- How much more should I expect to earn for an additional year of education?
- By how many years would life expectancy be expected to decrease for a given increase in air pollution?
- By how much would test scores increase for a given decrease in the number of students per teacher?
- And once again, this is typically what is of interest for policymakers

$$
\rightarrow \text { But how to compute this expected change in } y \text { for a given change of } x ?
$$

2. Univariate regressions

2.2. Coefficients estimation

- The idea is to find the line that fits the data the best
- Such that its slope can indicate how we expect \mathbf{y} to change if we increase \mathbf{x} by 1 unit

2. Univariate regressions

2.2. Coefficients estimation

- But how do we find that line?

2. Univariate regressions

2.2. Coefficients estimation

- We try to minimize the distance between each point and our line

2. Univariate regressions

2.2. Coefficients estimation

Take for instance the $20^{\text {th }}$ observation: Peru

And consider the following notations:

- We denote y_{i} the ige of the $i^{\text {th }}$ country
- We denote x_{i} the gini of the $i^{\text {th }}$ country
- We denote \widehat{y}_{i} the value of the y coordinate of our line for $x=x_{i}$
\rightarrow The distance between the $i^{\text {th }} \mathrm{y}$ value and the line is

$$
y_{i}-\widehat{y_{i}}
$$

- We label that distance $\widehat{\varepsilon_{i}}$

2. Univariate regressions

2.2. Coefficients estimation

- $\widehat{\varepsilon_{i}}$ being the distance between a point y_{i} and its corresponding value on the line $\widehat{y_{i}}$, we can write:

$$
y_{i}=\widehat{y_{i}}+\widehat{\varepsilon_{i}}
$$

- And because \widehat{y}_{i} is a straight line, it can be expressed as

$$
\widehat{y_{i}}=\hat{\alpha}+\hat{\beta} x_{i}
$$

- Where:
- $\hat{\alpha}$ is the intercept
- $\hat{\beta}$ is the slope

2. Univariate regressions

2.2. Coefficients estimation

- Combining these two definitions yields the equation:

$$
y_{i}=\hat{\alpha}+\hat{\beta} x_{i}+\widehat{\varepsilon_{i}} \begin{cases}y_{i}=\widehat{y_{i}}+\widehat{\varepsilon_{i}} & \text { Definition of distance } \\ \widehat{y}_{i}=\hat{\alpha}+\hat{\beta} x_{i} & \text { Definition of the line }\end{cases}
$$

- Depending on the values of $\hat{\alpha}$ and $\hat{\beta}$, the value of every $\widehat{\varepsilon_{i}}$ will change

Attempt 1: $\hat{\alpha}$ is too high and $\hat{\beta}$ is too low $\rightarrow \widehat{\varepsilon_{i}}$ are large

Attempt 2: $\hat{\alpha}$ is too low and $\hat{\beta}$ is too high $\rightarrow \widehat{\varepsilon_{i}}$ are large

Attempt 3: both $\hat{\alpha}$ and $\hat{\beta}$ seem right $\rightarrow \widehat{\varepsilon_{i}}$ are low

2. Univariate regressions

2.2. Coefficients estimation

- We want to find the values of $\hat{\alpha}$ and $\hat{\beta}$ that minimize the overall distance between the points and the line

$$
\min _{\hat{\alpha}, \hat{\beta}} \sum_{i=1}^{n} \widehat{\varepsilon}_{i}^{2}
$$

- Note that we square $\widehat{\varepsilon_{i}}$ to avoid that its positive and negative values compensate
- This method is what we call Ordinary Least Squares (OLS)
- To solve this optimization problem, we need to express $\widehat{\varepsilon_{i}}$ it in terms of alpha $\hat{\alpha}$ and $\hat{\beta}$

$$
\begin{gathered}
y_{i}=\hat{\alpha}+\hat{\beta} x_{i}+\widehat{\varepsilon_{i}} \\
\Longleftrightarrow \\
\widehat{\varepsilon_{i}}=y_{i}-\hat{\alpha}-\hat{\beta} x_{i}
\end{gathered}
$$

2. Univariate regressions

2.2. Coefficients estimation

- And our minimization problem writes

$$
\begin{gathered}
\min _{\hat{\alpha}, \hat{\beta}} \sum_{i=1}^{n}\left(y_{i}-\hat{\alpha}-\hat{\beta} x_{i}\right)^{2} \\
\frac{\partial}{\partial \hat{\alpha}}=0 \Longleftrightarrow-2 \sum_{i=1}^{n}\left(y_{i}-\hat{\alpha}-\hat{\beta} x_{i}\right)=0 \\
\frac{\partial}{\partial \hat{\beta}}=0 \Longleftrightarrow-2 x_{i} \sum_{i=1}^{n}\left(y_{i}-\hat{\alpha}-\hat{\beta} x_{i}\right)=0
\end{gathered}
$$

- Rearranging the first equation yields

$$
\sum_{i=1}^{n} y_{i}-n \hat{\alpha}-\sum_{i=1}^{n} \hat{\beta} x_{i}=0 \Longleftrightarrow \hat{\alpha}=\bar{y}-\hat{\beta} \bar{x}
$$

2. Univariate regressions

2.2. Coefficients estimation

- Replacing $\hat{\alpha}$ in the second equation by its new expression writes

$$
-2 x_{i} \sum_{i=1}^{n}\left(y_{i}-\hat{\alpha}-\hat{\beta} x_{i}\right)=0 \Longleftrightarrow-2 x_{i} \sum_{i=1}^{n}\left[y_{i}-(\bar{y}-\hat{\beta} \bar{x})-\hat{\beta} x_{i}\right]=0
$$

- And by rearranging the terms we obtain

$$
\hat{\beta}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}
$$

- Notice that multiplying the nominator and the denominator by $1 / n$ yields:

$$
\hat{\beta}=\frac{\operatorname{Cov}\left(x_{i}, y_{i}\right)}{\operatorname{Var}\left(x_{i}\right)} \quad ; \quad \hat{\alpha}=\bar{y}-\frac{\operatorname{Cov}\left(x_{i}, y_{i}\right)}{\operatorname{Var}\left(x_{i}\right)} \times \bar{x}
$$

Practice

1) Import ggcurve. csv and compute the $\hat{\alpha}$ and $\hat{\beta}$ coefficients of that equation:

$$
\mathrm{IGE}_{i}=\hat{\alpha}+\hat{\beta} \times \operatorname{gini}_{i}+\widehat{\varepsilon_{i}}
$$

2) Create a new variable in the dataset for $\widehat{I G E}$
3) Plot your results (scatter plot + line)

Hints: You can use different y variables for different geometries by specifying the mapping within the geometry function: geom_point(aes(y = y))

$$
\hat{\beta}=\frac{\operatorname{Cov}\left(x_{i}, y_{i}\right)}{\operatorname{Var}\left(x_{i}\right)} \quad \hat{\alpha}=\bar{y}-\frac{\operatorname{Cov}\left(x_{i}, y_{i}\right)}{\operatorname{Var}\left(x_{i}\right)} \times \bar{x}
$$

You've got 10 minutes!

Solution

1) Import ggcurve. csv and compute the $\hat{\alpha}$ and $\hat{\beta}$ coefficients of that equation:
```
# Read the data
ggcurve <- read.csv("ggcurve.csv")
# Compute beta
beta <- cov(ggcurve$gini, ggcurve$ige) / var(ggcurve$gini)
# Compute alpha
alpha <- mean(ggcurve$ige) - (beta * mean(ggcurve$gini))
```

```
c(alpha, beta)
```

\#\# [1] -0.09129311 1.01546204
2) Create a new variable in the dataset for $\widehat{\mathrm{IGE}}$

```
ggcurve <- ggcurve %>%
    mutate(fit = alpha + beta * gini)
```


Solution

3) Plot your results (scatter plot + line)
ggplot(ggcurve, aes(x = gini)) +
geom_point(aes(y = ige)) + geom_line(aes(y = fit))

2. Univariate regressions

2.2. Coefficients estimation

- As usual there are functions to do that in \mathbf{R}
- $\operatorname{Im}()$ to estimate regression coefficients
- It has two main arguments:
- Formula: written as $\mathbf{y} \sim \mathbf{x}$
- Data: where y and x are

```
lm(ige ~ gini, ggcurve)
```

```
##
## Call:
## lm(formula = ige ~ gini, data = ggcurve)
##
## Coefficients:
## (Intercept)
## -0.09129 1.01546
    ni
```

- geom_smooth() to plot the fit

```
ggplot(ggcurve, aes(x = gini, y = ige)) +
    geom_point() +
    geom_smooth(method = "lm", formula = y ~ x)
```


Vocabulary

- This equation we're working on is called a regression model

$$
y_{i}=\hat{\alpha}+\hat{\beta} x_{i}+\widehat{\varepsilon_{i}}
$$

- We say that we regress y on x to find the coefficients $\hat{\alpha}$ and $\hat{\beta}$ that characterize the regression line
- We often call $\hat{\alpha}$ and $\hat{\beta}$ parameters of the regression because we tune them to fit our model to the data
- We also have different names for the x and y variables
- y is called the dependent or explained variable
- x is called the independent or explanatory variable
- We call $\widehat{\varepsilon}_{i}$ the residuals because it is what is left after we fitted the data the best we could
- And $\hat{y}_{i}=\hat{\alpha}+\hat{\beta} x_{i}$, i.e., the value on the regression line for a given x_{i} are called the fitted values

Overview

1. Joint distributions \checkmark

1.1. Definition
1.2. Covariance
1.3. Correlation

3. Binary variables

3.1. Binary dependent variables
3.2. Binary independent variables

4. Wrap up!

2. Univariate regressions \checkmark
2.1. Introduction to regressions
2.2. Coefficients estimation

Overview

1. Joint distributions \checkmark

1.1. Definition
1.2. Covariance
1.3. Correlation
2. Univariate regressions \checkmark
2.1. Introduction to regressions
2.2. Coefficients estimation

3. Binary variables

3.1. Binary dependent variables
3.2. Binary independent variables

3. Binary variables

3.1. Binary dependent variables

- So far we've considered only continuous variables in our regression models
- But what if our dependent variable is discrete?
- Consider that we have data on candidates to a job:
- Their Baccalauréat grade (/20)
- Whether they got accepted

3. Binary variables

3.1. Binary dependent variables

- Even if the outcome variable is binary we can regress it on the grade variable
- We can convert it into a dummy variable, a variable taking either the value $\mathbf{0}$ or $\mathbf{1}$
- Here consider a dummy variable taking the value 1 if the person was accepted

$$
1\left\{y_{i}=\text { Accepted }\right\}=\hat{\alpha}+\hat{\beta} \times \operatorname{Grade}_{i}+\hat{\varepsilon_{i}}
$$

3. Binary variables

3.1. Binary dependent variables

- The fitted values can be viewed as the probability to be accepted for a given grade
- $\hat{\beta}$ is thus by how much this probability would vary on expectation for a 1 point increase in the grade
- That's why we call OLS regression models with a binary outcome Linear Probability Models

3. Binary variables

3.1. Binary dependent variables

- But what kind of problems could we encounter with such models?
- What would be the $\hat{\alpha}$ coefficient here?
- And what's the probability to be accepted for a grade of 18 ?

3. Binary variables

3.1. Binary dependent variables

- With an LPM you can end up with "probabilities" that are lower than $\mathbf{0}$ and greater than 1
- Interpretation is only valid for values of x sufficiently close to the mean
- Keep that in mind and be careful when interpreting the results of an LPM

3. Binary variables

3.2. Binary independent variables

- Now consider that we have individual data containing
- The sex
- The height (centimeters)
- So the situation is different
- We used to have a binary dependent variable:

$$
1\left\{y_{i}=\text { Accepted }\right\}=\hat{\alpha}+\hat{\beta} \times \operatorname{Grade}_{i}+\hat{\varepsilon_{i}}
$$

- We now have a binary independent variable:

$$
\text { Height }_{i}=\hat{\alpha}+\hat{\beta} \times 1\left\{\operatorname{Sex}_{i}=\text { Male }\right\}+\hat{\varepsilon}_{i}
$$

\rightarrow How would you interpret the coefficient $\hat{\beta}$ from this regression?

3. Binary variables

3.2. Binary independent variables

- If the sex variable was continuous it would be the expected increase in height for a "1 unit increase" in sex
- Here the "1 unit increase" is switching from 0 to 1, i.e. from female to male
- With that in mind, how would you interpret the coefficient $\hat{\beta}$?

3. Binary variables

3.2. Binary independent variables

- If I replace the point geometry by the corresponding boxplots
- What this "1 unit increase" corresponds to should be clearer
- The coefficient $\hat{\beta}$ is actually the difference between the average height for males and females

3. Binary variables

3.2. Binary independent variables

$\overline{\text { Height }_{\left[\text {Sex }_{i}=\text { Female }\right]}}=165$
$\overline{\text { Height }_{\left[\text {Sex }_{i}=\text { Male }\right]}}=176$

$$
\begin{gathered}
\text { Height }_{i}=\hat{\alpha}+\hat{\beta} \times 1\left\{\mathrm{Sex}_{i}=\mathrm{Male}\right\}+\hat{\varepsilon_{i}} \\
\hat{\alpha}=165 \quad \hat{\beta}=11
\end{gathered}
$$

Height $_{i}=\hat{\alpha}+\hat{\beta} \times 1\left\{\operatorname{Sex}_{i}=\right.$ Female $\}+\hat{\varepsilon_{i}}$

$$
\hat{\alpha}=176 \quad \hat{\beta}=-11
$$

3. Binary variables

3.2. Binary independent variables

- In terms of fitted values:

$$
\text { Height }_{i}=\hat{\alpha}+\hat{\beta} \times 1\left\{\operatorname{Sex}_{i}=\text { Male }\right\}+\hat{\varepsilon}_{i}
$$

- We now have $\hat{\alpha}$ and $\hat{\beta}$:

$$
\text { Height }_{i}=165+11 \times 1\left\{\text { Sex }_{i}=\text { Male }\right\}+\hat{\varepsilon}_{i}
$$

- The fitted values write:

$$
\widehat{\text { Height }}_{i}=165+11 \times 1\left\{\text { Sex }_{i}=\text { Male }\right\}
$$

- When the dummy equals 0 (females):

$$
\begin{aligned}
\widehat{\text { Height }}_{i} & =165+11 \times 0 \\
& =165=\overline{\text { Height }_{\left[\text {Sex }_{i}=\right.\text { Female }}}
\end{aligned}
$$

- When the dummy equals 1 (males):

$$
\begin{aligned}
&{\text { Height }_{i}}=165+11 \times 1 \\
&=176=\widehat{\text { Height }_{\left[\text {Sex }_{i}=\text { Male }\right]}}
\end{aligned}
$$

Overview

1. Joint distributions \checkmark

1.1. Definition
1.2. Covariance
1.3. Correlation
2. Univariate regressions \checkmark
2.1. Introduction to regressions
2.2. Coefficients estimation

3. Binary variables \checkmark

3.1. Binary dependent variables
3.2. Binary independent variables

4. Wrap up!

4. Wrap up!

1. Joint distribution

The joint distribution shows the possible values and associated frequencies for two variables simultaneously

4. Wrap up!

1. Joint distribution

\rightarrow When describing a joint distribution, we're interested in the relationship between the two variables

- The covariance quantifies the joint deviation of two variables from their respective mean
- It can take values from $-\infty$ to ∞ and depends on the unit of the data

$$
\operatorname{Cov}(x, y)=\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)
$$

- The correlation is the covariance of two variables divided by the product of their standard deviation
- It can take values from -1 to 1 and is independent from the unit of the data

$$
\operatorname{Corr}(x, y)=\frac{\operatorname{Cov}(x, y)}{\operatorname{SD}(x) \times \operatorname{SD}(y)}
$$

4. Wrap up!

2. Regression

- This can be expressed with the regression equation:

$$
y_{i}=\hat{\alpha}+\hat{\beta} x_{i}+\hat{\varepsilon_{i}}
$$

- Where $\hat{\alpha}$ is the intercept and $\hat{\beta}$ the slope of the line $\hat{y_{i}}=\hat{\alpha}+\hat{\beta} x_{i}$, and $\hat{\varepsilon_{i}}$ the distances between the points and the line

$$
\begin{gathered}
\hat{\beta}=\frac{\operatorname{Cov}\left(x_{i}, y_{i}\right)}{\operatorname{Var}\left(x_{i}\right)} \\
\hat{\alpha}=\bar{y}-\hat{\beta} \times \bar{x}
\end{gathered}
$$

- $\hat{\alpha}$ and $\hat{\beta}$ minimize $\hat{\varepsilon_{i}}$

4. Wrap up!

3. Binary variables

Binary dependent variables

- The fitted values can be viewed as probabilities
- $\hat{\beta}$ is the expected increase in the probability that $y=1$ for a one unit increase in x

- We call that a Linear Probability Model

Binary independent variables

- The x variable should be viewed as a dummy 0/1
- $\hat{\beta}$ is the difference between the average y for the group $x=1$ and the group $x=0$

