Lecture 8

Louis SIRUGUE

CPES 2 - Fall 2022

Import data

fb <- read.csv("C:/User/Documents/ligue1.csv", encoding = "UTF-8")</pre>

Class

is.numeric("1.6180339") # What would be the output?

[1] FALSE

Subsetting

fb\$Home[3]

[1] "Troyes"

Distributions

• The distribution of a variable documents all its possible values and how frequent they are

• We can describe a distribution with:

Distributions

• The distribution of a variable documents all its possible values and how frequent they are

- We can describe a distribution with:
 - Its central tendency

Distributions

• The distribution of a variable documents all its possible values and how frequent they are

- We can describe a distribution with:
 - Its central tendency
 - And its **spread**

Central tendency

• The **mean** is the sum of all values divided by the number of observations

 $ar{x} = rac{1}{N}\sum_{i=1}^N x_i$

Spread

• The **standard deviation** is square root of the average squared deviation from the mean

$$\mathrm{SD}(x) = \sqrt{\mathrm{Var}(x)} = \sqrt{rac{1}{N}\sum_{i=1}^N (x_i - ar{x})^2}$$

• The **median** is the value that divides the (sorted) distribution into two groups of equal size

$$\mathrm{Med}(x) = egin{cases} x[rac{N+1}{2}] & ext{if N is odd} \ rac{x[rac{N}{2}]+x[rac{N}{2}+1]}{2} & ext{if N is even} \end{cases}$$

• The **interquartile range** is the difference between the maximum and the minimum value from the middle half of the distribution

$$IQR = Q_3 - Q_1$$

Inference

- In Statistics, we view variables as a given realization of a **data generating process**
 - Hence, the **mean** is what we call an **empirical moment**, which is an **estimation**...
 - ... of the **expected value**, the **theoretical moment** of the DGP we're interested in
- To know how confident we can be in this estimation, we need to compute a **confidence interval**

$$[ar{x} - t_{n-1, \ 97.5\%} imes rac{{
m SD}(x)}{\sqrt{n}}; \ ar{x} + t_{n-1, \ 97.5\%} imes rac{{
m SD}(x)}{\sqrt{n}}]$$

- \circ It gets **larger** as the **variance** of the distribution of x increases
- And gets **smaller** as the **sample size** *n* increases

Packages

library(dplyr)

Main dplyr functions

Function	Meaning
mutate()	Modify or create a variable
select()	Keep a subset of variables
filter()	Keep a subset of observations
arrange()	Sort the data
group_by()	Group the data
summarise()	Summarizes variables into 1 observation per group

Merge data

```
a <- data.frame(x = c(1, 2, 3), y = c("a", "b", "c"))
b <- data.frame(x = c(4, 5, 6), y = c("d", "e", "f"))
c <- data.frame(x = 1:6, z = c("alpha", "bravo", "charlie", "delta", "echo", "foxtrot"))</pre>
```

```
a %>% bind_rows(b) %>% left_join(c, by = "x")
```

x	у	z
1	а	alpha
2	b	bravo
3	С	charlie
4	d	delta
5	e	echo
6	f	foxtrot

Reshape data

country	year	share_tertiary	share_gdp
FRA	2015	44.69	3.40
USA	2015	46.52	3.21

data %>% pivot_longer(c(share_tertiary, share_gdp), names_to = "Variable", values_to = "Value")

country	year	Variable	Value
FRA	2015	share_tertiary	44.69
FRA	2015	share_gdp	3.40
USA	2015	share_tertiary	46.52
USA	2015	share_gdp	3.21

The 3 core components of the ggplot() function

Component	Contribution	Implementation
Data	Underlying values	ggplot(data, data %>% ggplot(.,
Mapping	Axis assignment	aes(x = V1, y = V2,))
Geometry	Type of plot	+ geom_point() + geom_line() +

• Any other element should be added with a + sign

```
ggplot(data, aes(x = V1, y = V2)) +
geom_point() + geom_line() +
anything_else()
```

Main customization tools

Item to customize	Main functions
Axes	<pre>scale_[x/y]_[continuous/discrete]</pre>
Baseline theme	theme_[void/minimal//dark]()
Annotations	geom_[[h/v]line/text](), annotate()
Theme	theme(axis.[line/ticks].[x/y] =,

Main types of geometry

Geometry	Function	
Bar plot	geom_bar()	
Histogram	geom_histogram()	
Area	geom_area()	
Line	geom_line()	
Density	geom_density()	
Boxplot	geom_boxplot()	
Violin	geom_violin()	
Scatter plot	geom_point()	

Main types of aesthetics

Argument	Meaning
alpha	opacity from 0 to 1
color	color of the geometry
fill	fill color of the geometry
size	size of the geometry
shape	shape for geometries like points
linetype	solid, dashed, dotted, etc.

ggplot(data, aes(x = V1, y = V2, size = V3)) +
geom_point(color = "steelblue", alpha = .6)

- If specified in the geometry

 It will apply uniformly to every all the geometry
- If assigned to a variable **in aes**
 - it will **vary with the variable** according to a scale documented in legend

6 ----

9

11 12

15

16 -18

R Markdown: Three types of content

YAML header

14/66

Useful features

→ Inline code allows to include the output of some R code within text areas of your report

Syntax	Output
`paste("a", "b", sep = "-")`	paste("a", "b", sep = "-")
`r paste("a", "b", sep = "-")`	a-b

→ kable() for clean html tables and datatable() to navigate in large tables

kable(results_table)
datatable(results_table)

LaTeX for equations

- LAT_EX is a convenient way to display mathematical symbols and to structure equations
 The syntax is mainly based on backslashes \ and braces {}
- → What you **type** in the text area: $x \setminus q \int \frac{\lambda}{2}$ → What is **rendered** when knitting the document: $x \neq \frac{\alpha \times \beta}{2}$

To include a LaTeX equation in R Markdown, you simply have to surround it with the \$ sign

The mean formula with one \$ on each side

- → For inline equations
- $\overline{x} = rac{1}{N} \sum_{i=1}^N x_i$

The mean formula with two \$ on each side

→ For large/emphasized equations

$$\overline{x} = rac{1}{N}\sum_{i=1}^N x_i$$

Today: We start Econometrics!

1. Joint distributions

1.1. Definition
 1.2. Covariance
 1.3. Correlation

3. Binary variables

3.1. Binary dependent variables3.2. Binary independent variables

4. Wrap up!

2. Univariate regressions

2.1. Introduction to regressions

2.2. Coefficients estimation

Today: *We start Econometrics!*

1. Joint distributions

- 1.1. Definition 1.2. Covariance
- 1.3. Correlation

1.1. Definition

- The joint distribution shows the values and associated frequencies for two variables simultaneously
 - Remember how the **density** could represent the distribution of a **single variable**

1.1. Definition

- The joint distribution shows the values and associated frequencies for two variables simultaneously
 - Remember how the **density** could represent the distribution of a **single variable**
 - The **joint density** can represent the joint distribution of **two variables**

1.2. Covariance

- When describing a single distribution, we're interested in its spread and central tendency
- When describing a **joint distribution**, we're interested in the **relationship** between the two variables
 - This can be characterized by the *covariance*

$$\mathrm{Cov}(x,y) = rac{1}{N}\sum_{i=1}^N (x_i - ar{x})(y_i - ar{y})$$

If **y** tends to be **large** relative to its mean when **x** is **large** relative to its mean, their **covariance** is **positive**

Conversely, if **one** tends to be **large** when the **other** tends to be **low**, the **covariance** is **negative**

1.2. Covariance

1.2. Covariance

 $\operatorname{Cov}(X, a) = 0$ $\operatorname{Cov}(X, X) = \operatorname{Var}(X)$ $\operatorname{Cov}(X, Y) = \operatorname{Cov}(Y, X)$ $\operatorname{Cov}(aX, bY) = ab\operatorname{Cov}(X, Y)$ $\operatorname{Cov}(X+a,Y+b) = \operatorname{Cov}(X,Y)$ $\operatorname{Cov}(aX+bY, cW+dZ) = ac\operatorname{Cov}(X, W) + ad\operatorname{Cov}(X, Z) +$ bcCov(Y, W) + bdCov(Y, Z)

1.3. Correlation

- One disadvantage of the **covariance** is that is it **not standardized**
 - You **cannot** directly **compare** the covariance of two pairs of completely different variables
 - Given distance variables will have a larger covariance in centimeters than in meters

 \rightarrow Theoretically the **covariance** can take **values** from $-\infty$ to $+\infty$

- To **net out** the covariance from the **unit** of the data, we can **divide** it by $\mathrm{SD}(x) imes\mathrm{SD}(y)$
 - We call this **standardized** measure the **correlation**
 - Correlations coefficients are **comparable** because they are independent from the unit of the data

$$\operatorname{Corr}(x,y) = rac{\operatorname{Cov}(x,y)}{\operatorname{SD}(x) imes \operatorname{SD}(y)}$$

ightarrow The **correlation** coefficient is bounded between **values** from -1 to 1

1.3. Correlation

→ But a same correlation can hide very different relationships

\rightarrow Covariance and correlation in R

x <- c(50, 70, 60, 80, 60) y <- c(10, 30, 20, 30, 40)

• The **covariance** can be obtain with the function cov()

cov(x, y)

[1] 70

• The **correlation** can be obtain with the function cor()

cor(x, y)

[1] 0.5384615

Overview

1. Joint distributions \checkmark

1.1. Definition
 1.2. Covariance
 1.3. Correlation

3. Binary variables

3.1. Binary dependent variables3.2. Binary independent variables

4. Wrap up!

2. Univariate regressions

2.1. Introduction to regressions

2.2. Coefficients estimation

Overview

1. Joint distributions ✓

1.1. Definition
 1.2. Covariance
 1.3. Correlation

2. Univariate regressions

- 2.1. Introduction to regressions
- 2.2. Coefficients estimation

- 2.1. Introduction to regressions
 - Consider the following dataset

ggcurve <- read.csv("ggcurve.csv")
kable(head(ggcurve, 5), "First 5 rows")</pre>

First 5 rows			
country	ige	gini	
Denmark	0.15	0.38	
Norway	0.17	0.33	
Finland	0.18	0.38	
Canada	0.19	0.46	
Australia	0.26	0.44	

The data contains **2 variables** at the **country level**:

1. **IGE:** Intergenerational elasticity, which captures the % average increase in child income for a 1% increase in parental income

2. Gini: Gini index of income inequality between0: everybody has the same income1: a single individual has all the income

2.1. Introduction to regressions

• To investigate the **relationship** between these two variables we can start with a **scatterplot**

ggplot(ggcurve , aes(x = gini, y = ige, label = country)) + geom_text()

China 0.6 Brazil Chile United Kingdom Italy 0.5 Argentina United Statesan Switzerland Singapore **.**0.4 France Spain Japan Germany 0.3 New Zealand Sweden Australia 0.2 Canada Finland Norway Denmark 0.4 0.5 0.6 gini

Peru

2.1. Introduction to regressions

- We see that the two variables are **positively correlated** with each other:
 - When **one** tends to be **high** relative to its mean, **the other as well**
 - When **one** tends to be **low** relative to its mean, **the other as well**

cor(ggcurve\$gini, ggcurve\$ige)

[1] 0.6517277

- The correlation coefficient is equal to .65
 - Remember that the correlation can take values from -1 to 1
 - Here the correlation is indeed **positive** and **fairly strong**
- But how useful is this for real-life applications? We may want more **practical** information:
 - \circ Like by how much y is **expected** to **increas**e for a given change in x
 - This is of particular interest for economists and **policy** makers

- 2.1. Introduction to regressions
 - Consider these two relationships :

- → One is less noisy but flatter
- → One is noisier but steeper

Both have a correlation of .75

- 2.1. Introduction to regressions
 - Consider these two relationships :

But a given increase in x is not associated with a same increase in y!

2.1. Introduction to regressions

- Knowing that income inequality is **negatively correlated** with intergenerational mobility is one thing
- But how much more intergenerational mobility could we expect for a given reduction in inequality?
 We need to characterize the "steepness" of the relationship!
- It is usually the **type of questions** we're interested in:
 - How much more should I expect to earn for an additional year of education?
 - By how many years would life expectancy be expected to decrease for a given increase in air pollution?
 - By how much would test scores increase for a given decrease in the number of students per teacher?
- And once again, this is typically what is of interest for **policymakers**

\rightarrow But how to compute this expected change in y for a given change of x?

2.2. Coefficients estimation

- The idea is to find the **line that fits the data** the best
 - Such that its **slope** can indicate how we **expect y to change** if we **increase x by 1** unit

2.2. Coefficients estimation

• But how do we find that line?

2.2. Coefficients estimation

• We try to **minimize the distance** between each point and our line

2.2. Coefficients estimation

Take for instance the 20th observation: Peru

And consider the following **notations**:

- We denote y_i the ige of the $i^{
 m th}$ country
- We denote x_i the gini of the $i^{
 m th}$ country
- We denote $\widehat{y_i}$ the value of the y coordinate of our line for $x=x_i$
- ightarrow The distance between the $i^{
 m th}$ y value and the line is $y_i \widehat{y_i}$
 - We label that distance $\widehat{\varepsilon_i}$

2.2. Coefficients estimation

• $\widehat{\varepsilon_i}$ being the distance between a point y_i and its corresponding value on the line $\widehat{y_i}$, we can write:

 $y_i = \widehat{y_i} + \widehat{arepsilon_i}$

• And because $\widehat{y_i}$ is a **straight line**, it can be expressed as

$$\widehat{y_i} = \hat{lpha} + \hat{eta} x_i$$

- Where:
 - $\hat{\alpha}$ is the **intercept**
 - $\circ \hat{eta}$ is the **slope**

2.2. Coefficients estimation

• **Combining** these two **definitions** yields the equation:

$$y_i = \hat{lpha} + \hat{eta} x_i + \widehat{arepsilon_i} iggl\{ egin{array}{ll} y_i = \widehat{y_i} + \widehat{arepsilon_i} & ext{Definition of distance} \ \widehat{y_i} = \hat{lpha} + \hat{eta} x_i & ext{Definition of the line} \end{array} iggr\}$$

• Depending on the values of \hat{lpha} and \hat{eta} , the value of every $\widehat{arepsilon_i}$ will change

Attempt 1: $\hat{\alpha}$ is too high and $\hat{\beta}$ is too low $\rightarrow \hat{\varepsilon}_i$ are large **Attempt 2:** $\hat{\alpha}$ is too low and $\hat{\beta}$ is too high $\rightarrow \hat{\varepsilon}_i$ are large **Attempt 3:** both $\hat{\alpha}$ and $\hat{\beta}$ seem right $\rightarrow \hat{\varepsilon}_i$ are low

2.2. Coefficients estimation

• We want to find the values of $\hat{\alpha}$ and $\hat{\beta}$ that **minimize** the overall **distance** between the points and the line

$$\min_{\hat{lpha},\hat{eta}}\sum_{i=1}^{n}\widehat{arepsilon_{i}}^{2}$$

- Note that we square $\widehat{\varepsilon_i}$ to avoid that its positive and negative values compensate
- This method is what we call **Ordinary Least Squares (OLS)**
- To solve this **optimization problem**, we need to express $\widehat{\varepsilon_i}$ it in terms of alpha $\hat{\alpha}$ and $\hat{\beta}$

$$egin{aligned} y_i &= \hatlpha + \hateta x_i + \widehatarepsilon_i \ &\Longleftrightarrow \ \widehatarepsilon_i &= y_i - \hatlpha - \hateta x_i \end{aligned}$$

2.2. Coefficients estimation

• And our minimization problem writes

$$\min_{\hat{lpha},\hat{eta}}\sum_{i=1}^n(y_i-\hat{lpha}-\hat{eta}x_i)^2$$

$$egin{aligned} rac{\partial}{\partial \hat{lpha}} &= 0 & \Longleftrightarrow & -2\sum_{i=1}^n (y_i - \hat{lpha} - \hat{eta} x_i) = 0 \ \ rac{\partial}{\partial \hat{eta}} &= 0 & \Longleftrightarrow & -2x_i\sum_{i=1}^n (y_i - \hat{lpha} - \hat{eta} x_i) = 0 \end{aligned}$$

• Rearranging the first equation yields

$$\sum_{i=1}^n y_i - n \hatlpha - \sum_{i=1}^n \hateta x_i = 0 \iff \hatlpha = ar y - \hateta ar x$$

2.2. Coefficients estimation

• Replacing $\hat{\alpha}$ in the second equation by its new expression writes

$$-2x_i\sum_{i=1}^n(y_i-\hatlpha-\hateta x_i)=0\iff -2x_i\sum_{i=1}^n\left[y_i-(ar y-\hatetaar x)-\hateta x_i
ight]=0$$

• And by rearranging the terms we obtain

$$\hat{eta} = rac{\sum_{i=1}^n (x_i - ar{x})(y_i - ar{y})}{\sum_{i=1}^n (x_i - ar{x})^2}$$

• Notice that multiplying the nominator and the denominator by 1/n yields:

$$\hat{eta} = rac{ ext{Cov}(x_i,y_i)}{ ext{Var}(x_i)} ~~;~~ \hat{lpha} = ar{y} - rac{ ext{Cov}(x_i,y_i)}{ ext{Var}(x_i)} imes ar{x}$$

Practice

1) Import <code>ggcurve.csv</code> and compute the \hat{lpha} and \hat{eta} coefficients of that equation:

 $\mathrm{IGE}_i = \hat{lpha} + \hat{eta} imes \mathrm{gini}_i + \widehat{arepsilon_i}_i$

2) Create a new variable in the dataset for $\widehat{\mathrm{IGE}}$

3) Plot your results (scatter plot + line)

Hints: You can use different y variables for different geometries by specifying the mapping within the geometry function: $geom_point(aes(y = y))$

$$\hat{eta} = rac{ ext{Cov}(x_i,y_i)}{ ext{Var}(x_i)} \qquad \qquad \hat{lpha} = ar{y} - rac{ ext{Cov}(x_i,y_i)}{ ext{Var}(x_i)} imes ar{x}$$

You've got 10 minutes!

Solution

1) Import <code>ggcurve.csv</code> and compute the \hat{lpha} and \hat{eta} coefficients of that equation:

```
# Read the data
ggcurve <- read.csv("ggcurve.csv")
# Compute beta
beta <- cov(ggcurve$gini, ggcurve$ige) / var(ggcurve$gini)
# Compute alpha
alpha <- mean(ggcurve$ige) - (beta * mean(ggcurve$gini))</pre>
```

c(alpha, beta)

[1] -0.09129311 1.01546204

2) Create a new variable in the dataset for $\widehat{\mathrm{IGE}}$

```
ggcurve <- ggcurve %>%
  mutate(fit = alpha + beta * gini)
```

Solution

3) Plot your results (scatter plot + line)

ggplot(ggcurve, aes(x = gini)) +
geom_point(aes(y = ige)) + geom_line(aes(y = fit))

2.2. Coefficients estimation

- As usual there are **functions** to do that **in R**
- **Im()** to estimate regression coefficients
- It has two main **arguments:**
 - Formula: written as **y** ~ **x**
 - **Data:** where y and x are

```
lm(ige ~ gini, ggcurve)
```

```
##
## Call:
## Call:
## lm(formula = ige ~ gini, data = ggcurve)
##
## Coefficients:
## (Intercept) gini
## -0.09129 1.01546
```

• geom_smooth() to plot the fit

ggplot(ggcurve, aes(x = gini, y = ige)) +
geom_point() +
geom_smooth(method = "lm", formula = y ~ x)

Vocabulary

• This equation we're working on is called a **regression model**

$$y_i = \hat{lpha} + \hat{eta} x_i + \widehat{arepsilon_i}$$

- $\circ~$ We say that we **regress** y **on** x to find the coefficients \hat{lpha} and \hat{eta} that characterize the regression line
- We often call \hat{lpha} and \hat{eta} parameters of the regression because we tune them to fit our model to the data
- We also have different names for the *x* and *y* variables
 - *y* is called the **dependent** or **explained** variable
 - *x* is called the **independent** or **explanatory** variable
- We call $\widehat{\varepsilon_i}$ the **residuals** because it is what is left after we fitted the data the best we could
- And $\hat{y_i} = \hat{lpha} + \hat{eta} x_i$, i.e., the value on the regression line for a given x_i are called the **fitted values**

Overview

1. Joint distributions \checkmark

1.1. Definition
 1.2. Covariance
 1.3. Correlation

3. Binary variables

3.1. Binary dependent variables3.2. Binary independent variables

4. Wrap up!

2. Univariate regressions ✓

2.1. Introduction to regressions

2.2. Coefficients estimation

Overview

1. Joint distributions ✓

1.1. Definition
 1.2. Covariance
 1.3. Correlation

2. Univariate regressions ✓

2.1. Introduction to regressions

2.2. Coefficients estimation

3. Binary variables

3.1. Binary dependent variables3.2. Binary independent variables

- So far we've considered only continuous variables in our regression models
 - But what if our **dependent** variable is **discrete?**
- Consider that we have data on candidates to a job:
 - Their *Baccalauréat* grade (/20)
 - Whether they got accepted

3.1. Binary dependent variables

- Even if the **outcome variable** is binary we can regress it on the grade variable
 - We can convert it into a **dummy** variable, a variable taking either the value **0 or 1**
 - Here consider a dummy variable taking the value 1 if the person was accepted

$$1\{y_i = ext{Accepted}\} = \hat{lpha} + \hat{eta} imes ext{Grade}_i + \hat{arepsilon_i}$$

→ How would you interpret the beta coefficient from this regression?

- The **fitted values** can be viewed as the **probability** to be accepted for a given grade
 - $\hat{\beta}$ is thus by how much this probability would vary on expectation for a 1 point increase in the grade
 - That's why we call OLS regression models with a binary outcome Linear Probability Models

- But what kind of **problems** could we encounter with **such models?**
 - $\circ~$ What would be the \hat{lpha} coefficient here?
 - And what's the probability to be accepted for a grade of 18?

- With an LPM you can end up with "probabilities" that are lower than 0 and greater than 1
 - Interpretation is only valid for values of x sufficiently close to the mean
 - Keep that in mind and be **careful** when interpreting the results of an LPM

3.2. Binary independent variables

- Now consider that we have individual **data** containing
 - The **sex**
 - The **height** (centimeters)
- So the situation is different
 - We used to have a **binary dependent variable:**

$$1\{y_i = ext{Accepted}\} = \hat{lpha} + \hat{eta} imes ext{Grade}_i + \hat{arepsilon_i}$$

• We now have a **binary independent variable:**

$$\mathrm{Height}_i = \hat{lpha} + \hat{eta} imes 1\{\mathrm{Sex}_i = \mathrm{Male}\} + \hat{arepsilon}_i$$

 \rightarrow How would you interpret the coefficient $\hat{\beta}$ from this regression?

- If the sex variable was **continuous** it would be the expected increase in height for a "1 unit increase" in sex
 - Here the **"1 unit increase"** is switching from 0 to 1, i.e. **from female to male**
 - With that in mind, how would you interpret the coefficient \hat{eta} ?

- If I replace the point geometry by the corresponding **boxplots**
 - What this "1 unit increase" corresponds to should be clearer
 - The coefficient $\hat{\beta}$ is actually the **difference** between the **average height** for males and females

3.2. Binary independent variables

 $\mathrm{Height}_{[\mathrm{Sex}_i = \mathrm{Female}]} = 165$

 $\overline{ ext{Height}}_{ ext{[Sex}_i= ext{Male]}} = 176$

$$egin{aligned} ext{Height}_i &= \hatlpha + \hateta imes 1\{ ext{Sex}_i = ext{Male}\} + \hatarepsilon_i \ \hatlpha &= 165 \qquad \hateta = 11 \end{aligned}$$

 $egin{aligned} ext{Height}_i &= \hat{lpha} + \hat{eta} imes 1\{ ext{Sex}_i = ext{Female}\} + \hat{arepsilon}_i \ \hat{lpha} &= 176 & \hat{eta} = -11 \end{aligned}$

1

- **3.2. Binary independent variables**
 - In terms of **fitted values:**

$$\mathrm{Height}_i = \hat{lpha} + \hat{eta} imes 1\{\mathrm{Sex}_i = \mathrm{Male}\} + \hat{arepsilon_i}$$

• We now have $\hat{\alpha}$ and $\hat{\beta}$:

$$ext{Height}_i = 165 + 11 imes 1 \{ ext{Sex}_i = ext{Male} \} + \hat{arepsilon_i}$$

• The fitted values write:

$$\widehat{\mathrm{Height}}_i = 165 + 11 imes 1\{\mathrm{Sex}_i = \mathrm{Male}\}$$

• When the dummy equals 0 (females):

 $\widehat{ ext{Height}}_i = 165 + 11 imes 0 \ = 165 = \overline{ ext{Height}_{[ext{Sex}_i = ext{Female}]}}$

• When the dummy equals 1 (males):

$$\widehat{ ext{Height}}_i = 165 + 11 imes 1 \ = 176 = \overline{ ext{Height}_{[ext{Sex}_i = ext{Male}]}}$$

Overview

1. Joint distributions \checkmark

1.1. Definition
 1.2. Covariance
 1.3. Correlation

3. Binary variables \checkmark

3.1. Binary dependent variables3.2. Binary independent variables

4. Wrap up!

2. Univariate regressions ✓

2.1. Introduction to regressions

2.2. Coefficients estimation

1. Joint distribution

The **joint distribution** shows the possible **values** and associated **frequencies** for **two variables** simultaneously

1. Joint distribution

→ When describing a joint distribution, we're interested in the relationship between the two variables

- The **covariance** quantifies the joint deviation of two variables from their respective mean
 - $\circ~$ It can take values from $-\infty$ to ∞ and depends on the unit of the data

$$\mathrm{Cov}(x,y) = rac{1}{N}\sum_{i=1}^N (x_i-ar{x})(y_i-ar{y})$$

The correlation is the covariance of two variables divided by the product of their standard deviation
 It can take values from -1 to 1 and is independent from the unit of the data

$$\mathrm{Corr}(x,y) = rac{\mathrm{Cov}(x,y)}{\mathrm{SD}(x) imes\mathrm{SD}(y)}$$

2. Regression

• This can be expressed with the **regression** equation:

$$y_i = \hat{lpha} + \hat{eta} x_i + \hat{arepsilon_i}$$

• Where $\hat{\alpha}$ is the **intercept** and $\hat{\beta}$ the **slope** of the **line** $\hat{y}_i = \hat{\alpha} + \hat{\beta}x_i$, and $\hat{\varepsilon}_i$ the **distances** between the points and the line

$$\hat{eta} = rac{ ext{Cov}(x_i,y_i)}{ ext{Var}(x_i)} \ \hat{lpha} = ar{y} - \hat{eta} imes ar{x}$$

• \hat{lpha} and \hat{eta} minimize $\hat{arepsilon_i}$

3. Binary variables

Binary dependent variables

- The fitted values can be viewed as probabilities
 - \hat{eta} is the expected increase in the probability that y=1 for a one unit increase in x

• We call that a Linear Probability Model

Binary independent variables

• The x variable should be viewed as a **dummy 0/1** $\circ \ \hat{\beta}$ is the difference between the average y for the group x = 1 and the group x = 0

