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Part I recap

Import data

fb <- read.csv("C:/User/Documents/ligue1.csv", encoding = "UTF-8")

Class

is.numeric("1.6180339") # What would be the output?

## [1] FALSE

Subsetting

fb$Home[3]

## [1] "Troyes"
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Part I recap

Distributions

The distribution of a variable documents all its possible values and how frequent they are

We can describe a distribution with:
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The distribution of a variable documents all its possible values and how frequent they are
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Part I recap

Distributions

The distribution of a variable documents all its possible values and how frequent they are

We can describe a distribution with:
Its central tendency
And its spread
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The mean is the sum of all values divided by the
number of observations

The median is the value that divides the (sorted)
distribution into two groups of equal size

The standard deviation is square root of the
average squared deviation from the mean

The interquartile range is the difference
between the maximum and the minimum value
from the middle half of the distribution

Part I recap

Central tendency

Spread

x̄ =
N

∑
i=1

xi
1

N
Med(x) = {

x[ ] if N  is odd

if N  is even

N+1
2

x[ ]+x[ +1]N

2
N

2

2

SD(x) = √Var(x) =


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⎷

N

∑
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(xi − x̄)21

N IQR = Q3 − Q1
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Part I recap

Inference

In Statistics, we view variables as a given realization of a data generating process
Hence, the mean is what we call an empirical moment, which is an estimation...
... of the expected value, the theoretical moment of the DGP we're interested in

To know how confident we can be in this estimation, we need to compute a confidence interval

It gets larger as the variance of the distribution of  increases
And gets smaller as the sample size  increases

[x̄ − tn−1, 97.5% × ; x̄ + tn−1, 97.5% × ]
SD(x)

√n

SD(x)

√n

x
n
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Function Meaning

mutate() Modify or create a variable

select() Keep a subset of variables

filter() Keep a subset of observations

arrange() Sort the data

group_by() Group the data

summarise() Summarizes variables into 1 observation per group

Part I recap

Packages

library(dplyr)

Main dplyr functions
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Part I recap

Merge data

a <- data.frame(x = c(1, 2, 3), y = c("a", "b", "c"))

b <- data.frame(x = c(4, 5, 6), y = c("d", "e", "f"))

c <- data.frame(x = 1:6, z = c("alpha", "bravo", "charlie", "delta", "echo", "foxtrot"))

a %>% bind_rows(b) %>% left_join(c, by = "x")

x y z

1 a alpha

2 b bravo

3 c charlie

4 d delta

5 e echo

6 f foxtrot
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Part I recap

Reshape data

country year share_tertiary share_gdp

FRA 2015 44.69 3.40

USA 2015 46.52 3.21

data %>% pivot_longer(c(share_tertiary, share_gdp), names_to = "Variable", values_to = "Value")

country year Variable Value

FRA 2015 share_tertiary 44.69

FRA 2015 share_gdp 3.40

USA 2015 share_tertiary 46.52

USA 2015 share_gdp 3.21
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Part I recap

The 3 core components of the ggplot() function

Component Contribution Implementation

Data Underlying values ggplot(data, | data %>% ggplot(.,

Mapping Axis assignment aes(x = V1, y = V2, ...))

Geometry Type of plot + geom_point() + geom_line() + ...

Any other element should be added with a + sign

ggplot(data, aes(x = V1, y = V2)) + 

  geom_point() + geom_line() +

  anything_else()
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Main customization tools

Item to
customize Main functions

Axes scale_[x/y]_[continuous/discrete]

Baseline theme theme_[void/minimal/.../dark]()

Annotations geom_[[h/v]line/text](),
annotate()

Theme theme(axis.[line/ticks].[x/y] = ...,

Main types of geometry

Geometry Function

Bar plot geom_bar()

Histogram geom_histogram()

Area geom_area()

Line geom_line()

Density geom_density()

Boxplot geom_boxplot()

Violin geom_violin()

Scatter plot geom_point()

Part I recap
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Main types of aesthetics

Argument Meaning

alpha opacity from 0 to 1

color color of the geometry

fill fill color of the geometry

size size of the geometry

shape shape for geometries like points

linetype solid, dashed, dotted, etc.

If specified in the geometry
It will apply uniformly to every all the
geometry

If assigned to a variable in aes
it will vary with the variable according to a
scale documented in legend

Part I recap

ggplot(data, aes(x = V1, y = V2, size = V3)) + 

  geom_point(color = "steelblue", alpha = .6)
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YAML header

Code chunks

Text

Part I recap

R Markdown: Three types of content
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Syntax

`paste("a", "b", sep = "-")`

`r paste("a", "b", sep = "-")`

Output

paste("a", "b", sep = "-")

a-b

Part I recap

Useful features

➜ Inline code allows to include the output of some R code within text areas of your report

➜ kable() for clean html tables and datatable() to navigate in large tables

kable(results_table)

datatable(results_table)
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The mean formula with one $ on each side

    ➜ For inline equations

The mean formula with two $ on each side


    ➜ For large/emphasized equations

Part I recap

LaTeX for equations

 is a convenient way to display mathematical symbols and to structure equations
The syntax is mainly based on backslashes \ and braces {}

    ➜ What you type in the text area: $x \neq \frac{\alpha \times \beta}{2}$

    ➜ What is rendered when knitting the document: 

To include a LaTeX equation in R Markdown, you simply have to surround it with the $ sign

LT XA E

x ≠
α×β

2

¯̄x̄ = ∑
N

i=1 xi
1
N ¯̄x̄ =

N

∑
i=1

xi
1

N
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1. Joint distributions
1.1. Definition
1.2. Covariance
1.3. Correlation

2. Univariate regressions
2.1. Introduction to regressions
2.2. Coefficients estimation

3. Binary variables
3.1. Binary dependent variables
3.2. Binary independent variables

4. Wrap up!

Today: We start Econometrics!
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1. Joint distributions
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1. Joint distributions

1.1. Definition

The joint distribution shows the values and associated frequencies for two variables simultaneously
Remember how the density could represent the distribution of a single variable
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1. Joint distributions

1.1. Definition

The joint distribution shows the values and associated frequencies for two variables simultaneously
Remember how the density could represent the distribution of a single variable
The joint density can represent the joint distribution of two variables

0

0.005

0.01

0.015

0.02
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If y tends to be large relative to its mean when x is large
relative to its mean, their covariance is positive

Conversely, if one tends to be large when the other
tends to be low, the covariance is negative

1. Joint distributions

1.2. Covariance

When describing a single distribution, we're interested in its spread and central tendency
When describing a joint distribution, we're interested in the relationship between the two variables

This can be characterized by the covariance

Cov(x, y) =
N

∑
i=1

(xi − x̄)(yi − ȳ)
1

N

21 / 66

https://louissirugue.github.io/metrics_on_R/home.html


1. Joint distributions

1.2. Covariance
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1. Joint distributions

1.2. Covariance

Cov(X, a) =0

Cov(X,X) =Var(X)

Cov(X,Y ) =Cov(Y ,X)

Cov(aX, bY ) =abCov(X,Y )

Cov(X + a,Y + b) =Cov(X,Y )

Cov(aX + bY , cW + dZ) =acCov(X,W) + adCov(X,Z)+

bcCov(Y ,W) + bdCov(Y ,Z)
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1. Joint distributions

1.3. Correlation

One disadvantage of the covariance is that is it not standardized
You cannot directly compare the covariance of two pairs of completely different variables
Given distance variables will have a larger covariance in centimeters than in meters

➜ Theoretically the covariance can take values from  to 

To net out the covariance from the unit of the data, we can divide it by 
We call this standardized measure the correlation
Correlations coefficients are comparable because they are independent from the unit of the data

➜ The correlation coefficient is bounded between values from  to 

−∞ +∞

SD(x) × SD(y)

Corr(x, y) =
Cov(x, y)

SD(x) × SD(y)

−1 1
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1. Joint distributions

1.3. Correlation
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1. Joint distributions

➜ But a same correlation can hide very different relationships
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1. Joint distributions

➜ Covariance and correlation in R

x <- c(50, 70, 60, 80, 60)

y <- c(10, 30, 20, 30, 40)

The covariance can be obtain with the function cov()

cov(x, y)

## [1] 70

The correlation can be obtain with the function cor()

cor(x, y)

## [1] 0.5384615
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1. Joint distributions ✔
1.1. Definition
1.2. Covariance
1.3. Correlation

2. Univariate regressions
2.1. Introduction to regressions
2.2. Coefficients estimation

3. Binary variables
3.1. Binary dependent variables
3.2. Binary independent variables

4. Wrap up!

Overview
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1. Joint distributions ✔
1.1. Definition
1.2. Covariance
1.3. Correlation

2. Univariate regressions
2.1. Introduction to regressions
2.2. Coefficients estimation

Overview
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Consider the following dataset

ggcurve <- read.csv("ggcurve.csv")

kable(head(ggcurve, 5), "First 5 rows")

First 5 rows
country ige gini

Denmark 0.15 0.38

Norway 0.17 0.33

Finland 0.18 0.38

Canada 0.19 0.46

Australia 0.26 0.44

The data contains 2 variables at the country level:

1. IGE: Intergenerational elasticity, which captures
the % average increase in child income for
a 1% increase in parental income

2. Gini: Gini index of income inequality between
0: everybody has the same income
1: a single individual has all the income

2. Univariate regressions

2.1. Introduction to regressions
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2. Univariate regressions

2.1. Introduction to regressions

To investigate the relationship between these two variables we can start with a scatterplot

ggplot(ggcurve , aes(x = gini, y = ige, label = country)) + geom_text()
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2. Univariate regressions

2.1. Introduction to regressions

We see that the two variables are positively correlated with each other:
When one tends to be high relative to its mean, the other as well
When one tends to be low relative to its mean, the other as well

cor(ggcurve$gini, ggcurve$ige)

## [1] 0.6517277

The correlation coefficient is equal to .65
Remember that the correlation can take values from -1 to 1
Here the correlation is indeed positive and fairly strong

But how useful is this for real-life applications? We may want more practical information:
Like by how much  is expected to increase for a given change in 
This is of particular interest for economists and policy makers

y x
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➜ One is less noisy but flatter

➜ One is noisier but steeper

Both have a correlation of .75

2. Univariate regressions

2.1. Introduction to regressions

Consider these two relationships :
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But a given increase in 
is not associated with
a same increase in !

2. Univariate regressions

2.1. Introduction to regressions

Consider these two relationships :

x

y
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2. Univariate regressions

2.1. Introduction to regressions

Knowing that income inequality is negatively correlated with intergenerational mobility is one thing

But how much more intergenerational mobility could we expect for a given reduction in inequality?
We need to characterize the "steepness" of the relationship!

It is usually the type of questions we're interested in:
How much more should I expect to earn for an additional year of education?
By how many years would life expectancy be expected to decrease for a given increase in air pollution?
By how much would test scores increase for a given decrease in the number of students per teacher?

And once again, this is typically what is of interest for policymakers

➜ But how to compute this expected change in  for a given change of ?y x
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2. Univariate regressions

2.2. Coefficients estimation

The idea is to find the line that fits the data the best
Such that its slope can indicate how we expect y to change if we increase x by 1 unit
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2. Univariate regressions

2.2. Coefficients estimation

But how do we find that line?
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2. Univariate regressions

2.2. Coefficients estimation

We try to minimize the distance between each point and our line
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Take for instance the 20th observation: Peru
And consider the following notations:

We denote  the ige of the  country

We denote  the gini of the  country

We denote  the value of the  coordinate of our
line for 

➜ The distance between the  y value and the line is

We label that distance 

2. Univariate regressions

2.2. Coefficients estimation

yi ith

xi ith

ŷi y

x = xi

ith

yi − ŷi

ε̂i
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 being the distance between a point  and its
corresponding value on the line , we can write:

And because  is a straight line, it can be
expressed as

Where:
 is the intercept
 is the slope

2. Univariate regressions

2.2. Coefficients estimation

ε̂i yi
ŷi

yi = ŷi + ε̂i

ŷi

ŷi = α̂ + β̂xi

α̂

β̂
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Attempt 1:  is too high and  is
too low ➜  are large

Attempt 2:  is too low and  is
too high ➜  are large

Attempt 3: both  and  seem
right ➜  are low

2. Univariate regressions

2.2. Coefficients estimation

Combining these two definitions yields the equation:

Depending on the values of  and , the value of every  will change

yi = α̂ + β̂xi + ε̂i{
yi = ŷi + ε̂i Definition of distance

ŷi = α̂ + β̂xi Definition of the line

α̂ β̂ ε̂i

α̂ β̂

ε̂i

α̂ β̂

ε̂i

α̂ β̂

ε̂i
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2. Univariate regressions

2.2. Coefficients estimation

We want to find the values of  and  that minimize the overall distance between the points and the line

Note that we square  to avoid that its positive and negative values compensate
This method is what we call Ordinary Least Squares (OLS)

To solve this optimization problem, we need to express  it in terms of alpha  and 

α̂ β̂

min
α̂,β̂

n

∑
i=1

ε̂i
2

ε̂i

ε̂i α̂ β̂

yi = α̂ + β̂xi + ε̂i

⟺

ε̂i = yi − α̂ − β̂xi
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2. Univariate regressions

2.2. Coefficients estimation

And our minimization problem writes

Rearranging the first equation yields

min
α̂,β̂

n

∑
i=1

(yi − α̂ − β̂xi)
2

= 0 ⟺ −2
n

∑
i=1

(yi − α̂ − β̂xi) = 0

= 0 ⟺ −2xi

n

∑
i=1

(yi − α̂ − β̂xi) = 0

∂

∂α̂

∂

∂β̂

n

∑
i=1

yi − nα̂ −
n

∑
i=1

β̂xi = 0 ⟺ α̂ = ȳ − β̂x̄
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2. Univariate regressions

2.2. Coefficients estimation

Replacing  in the second equation by its new expression writes

And by rearranging the terms we obtain

Notice that multiplying the nominator and the denominator by  yields:

α̂

−2xi

n

∑
i=1

(yi − α̂ − β̂xi) = 0 ⟺ −2xi

n

∑
i=1

[yi − (ȳ − β̂x̄) − β̂xi] = 0

β̂ =
∑

n

i=1(xi − x̄)(yi − ȳ)

∑n

i=1(xi − x̄)2

1/n

β̂ = ; α̂ = ȳ − × x̄
Cov(xi, yi)

Var(xi)

Cov(xi, yi)

Var(xi)
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Practice

1) Import ggcurve.csv and compute the  and  coefficients of that equation:

2) Create a new variable in the dataset for 

3) Plot your results (scatter plot + line)

Hints: You can use different y variables for different geometries by specifying the mapping within the geometry function:
geom_point(aes(y = y))

You've got 10 minutes!

α̂ β̂

IGEi = α̂ + β̂ × ginii + ε̂i

ÎGE

β̂ = α̂ = ȳ − × x̄
Cov(xi, yi)

Var(xi)

Cov(xi, yi)

Var(xi)
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Solution

1) Import ggcurve.csv and compute the  and  coefficients of that equation:

# Read the data

ggcurve <- read.csv("ggcurve.csv")

# Compute beta

beta <- cov(ggcurve$gini, ggcurve$ige) / var(ggcurve$gini)

# Compute alpha

alpha <- mean(ggcurve$ige) - (beta * mean(ggcurve$gini))

c(alpha, beta)

## [1] -0.09129311  1.01546204

2) Create a new variable in the dataset for 

ggcurve <- ggcurve %>%

  mutate(fit = alpha + beta * gini)

α̂ β̂

ÎGE
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Solution

3) Plot your results (scatter plot + line)

ggplot(ggcurve, aes(x = gini)) + 

  geom_point(aes(y = ige)) + geom_line(aes(y = fit))
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lm() to estimate regression coefficients
It has two main arguments:

Formula: written as y ~ x
Data: where y and x are

lm(ige ~ gini, ggcurve)

## 

## Call:

## lm(formula = ige ~ gini, data = ggcurve)

## 

## Coefficients:

## (Intercept)         gini  

##    -0.09129      1.01546

geom_smooth() to plot the fit

ggplot(ggcurve, aes(x = gini, y = ige)) + 

  geom_point() + 

  geom_smooth(method = "lm", formula = y ~ x)

2. Univariate regressions

2.2. Coefficients estimation

As usual there are functions to do that in R
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Vocabulary

This equation we're working on is called a regression model

We say that we regress  on  to find the coefficients  and  that characterize the regression line
We often call  and  parameters of the regression because we tune them to fit our model to the data

We also have different names for the  and  variables
 is called the dependent or explained variable
 is called the independent or explanatory variable

We call  the residuals because it is what is left after we fitted the data the best we could

And , i.e., the value on the regression line for a given  are called the fitted values

yi = α̂ + β̂xi + ε̂i

y x α̂ β̂

α̂ β̂

x y

y

x

ε̂i

ŷi = α̂ + β̂xi xi
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1. Joint distributions ✔
1.1. Definition
1.2. Covariance
1.3. Correlation

2. Univariate regressions ✔
2.1. Introduction to regressions
2.2. Coefficients estimation

3. Binary variables
3.1. Binary dependent variables
3.2. Binary independent variables

4. Wrap up!

Overview
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3. Binary variables

3.1. Binary dependent variables

So far we've considered only continuous variables in our regression models
But what if our dependent variable is discrete?

Consider that we have data on candidates to a job:
Their Baccalauréat grade (/20)
Whether they got accepted
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➜ How would you interpret the beta
coefficient from this regression?

3. Binary variables

3.1. Binary dependent variables

Even if the outcome variable is binary we can regress it on the grade variable
We can convert it into a dummy variable, a variable taking either the value 0 or 1
Here consider a dummy variable taking the value 1 if the person was accepted

1{yi = Accepted} = α̂ + β̂ × Gradei + ε̂i
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3. Binary variables

3.1. Binary dependent variables

The fitted values can be viewed as the probability to be accepted for a given grade
 is thus by how much this probability would vary on expectation for a 1 point increase in the grade

That's why we call OLS regression models with a binary outcome Linear Probability Models
β̂
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3. Binary variables

3.1. Binary dependent variables

But what kind of problems could we encounter with such models?
What would be the  coefficient here?
And what's the probability to be accepted for a grade of 18?

α̂

55 / 66

https://louissirugue.github.io/metrics_on_R/home.html


3. Binary variables

3.1. Binary dependent variables

With an LPM you can end up with "probabilities" that are lower than 0 and greater than 1
Interpretation is only valid for values of x sufficiently close to the mean
Keep that in mind and be careful when interpreting the results of an LPM
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3. Binary variables

3.2. Binary independent variables

Now consider that we have individual data containing
The sex
The height (centimeters)

So the situation is different
We used to have a binary dependent variable:

We now have a binary independent variable:

➜ How would you interpret the coefficient  from this regression?

1{yi = Accepted} = α̂ + β̂ × Gradei + ε̂i

Heighti = α̂ + β̂ × 1{Sexi = Male} + ε̂i

β̂
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3. Binary variables

3.2. Binary independent variables

If the sex variable was continuous it would be the expected increase in height for a "1 unit increase" in sex
Here the "1 unit increase" is switching from 0 to 1, i.e. from female to male
With that in mind, how would you interpret the coefficient ?β̂
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3. Binary variables

3.2. Binary independent variables

If I replace the point geometry by the corresponding boxplots
What this "1 unit increase" corresponds to should be clearer
The coefficient  is actually the difference between the average height for males and femalesβ̂
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3. Binary variables

3.2. Binary independent variables

¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄
Height[Sexi=Female] = 165

¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄
Height[Sexi=Male] = 176

Heighti = α̂ + β̂ × 1{Sexi = Male} + ε̂i

α̂ = 165 β̂ = 11

Heighti = α̂ + β̂ × 1{Sexi = Female} + ε̂i

α̂ = 176 β̂ = −11
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When the dummy equals 0 (females): When the dummy equals 1 (males):

3. Binary variables

3.2. Binary independent variables

In terms of fitted values:

We now have  and :

The fitted values write:

Heighti = α̂ + β̂ × 1{Sexi = Male} + ε̂i

α̂ β̂

Heighti = 165 + 11 × 1{Sexi = Male} + ε̂i

ˆHeighti = 165 + 11 × 1{Sexi = Male}

ˆHeighti = 165 + 11 × 0

= 165 =
¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄
Height[Sexi=Female]

ˆHeighti = 165 + 11 × 1

= 176 =
¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄
Height[Sexi=Male]
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1. Joint distributions ✔
1.1. Definition
1.2. Covariance
1.3. Correlation

2. Univariate regressions ✔
2.1. Introduction to regressions
2.2. Coefficients estimation

3. Binary variables ✔
3.1. Binary dependent variables
3.2. Binary independent variables

4. Wrap up!

Overview
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4. Wrap up!

1. Joint distribution

The joint distribution shows the possible values and associated frequencies for two variables simultaneously

0

0.005

0.01

0.015

0.02

63 / 66

https://louissirugue.github.io/metrics_on_R/home.html


4. Wrap up!

1. Joint distribution

➜ When describing a joint distribution, we're interested in the relationship between the two variables

The covariance quantifies the joint deviation of two variables from their respective mean
It can take values from  to  and depends on the unit of the data

The correlation is the covariance of two variables divided by the product of their standard deviation
It can take values from  to  and is independent from the unit of the data

−∞ ∞

Cov(x, y) =
N

∑
i=1

(xi − x̄)(yi − ȳ)
1

N

−1 1

Corr(x, y) =
Cov(x, y)

SD(x) × SD(y)
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## 

## Call:

## lm(formula = y ~ x, data = data)

## 

## Coefficients:

## (Intercept)            x  

##    -0.09129      1.01546

This can be expressed with the regression
equation:

Where  is the intercept and  the slope of the
line , and  the distances between
the points and the line

 and  minimize 

4. Wrap up!

2. Regression

yi = α̂ + β̂xi + ε̂i

α̂ β̂

ŷi = α̂ + β̂xi ε̂i

β̂ =
Cov(xi, yi)

Var(xi)

α̂ = ȳ − β̂ × x̄

α̂ β̂ ε̂i
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Binary dependent variables

The fitted values can be viewed as probabilities
 is the expected increase in the probability

that  for a one unit increase in 

We call that a Linear Probability Model

Binary independent variables

The  variable should be viewed as a dummy 0/1
 is the difference between the average  for

the group  and the group 

4. Wrap up!

3. Binary variables

β̂
y = 1 x

x

β̂ y

x = 1 x = 0
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