Lecture 8

Louis SIRUGUE

CPES 2 - Fall 2022

Import data

```
fb <- read.csv("C:/User/Documents/ligue1.csv", encoding = "UTF-8")</pre>
```

Class

```
is.numeric("1.6180339") # What would be the output?
## [1] FALSE
```

Subsetting

[1] "Troyes"

```
fb$Home[3]
```


Distributions

• The distribution of a variable documents all its possible values and how frequent they are

• We can describe a distribution with:

Distributions

• The distribution of a variable documents all its possible values and how frequent they are

- We can describe a distribution with:
 - Its central tendency

Distributions

• The distribution of a variable documents all its possible values and how frequent they are

- We can describe a distribution with:
 - Its central tendency
 - And its **spread**

Central tendency

• The **mean** is the sum of all values divided by the number of observations

$$ar{x} = rac{1}{N} \sum_{i=1}^N x_i$$

Spread

• The **standard deviation** is square root of the average squared deviation from the mean

$$\mathrm{SD}(x) = \sqrt{\mathrm{Var}(x)} = \sqrt{rac{1}{N} \sum_{i=1}^N (x_i - ar{x})^2}$$

• The **median** is the value that divides the (sorted) distribution into two groups of equal size

$$\operatorname{Med}(x) = \left\{ egin{array}{ll} x[rac{N+1}{2}] & ext{if N is odd} \ rac{x[rac{N}{2}] + x[rac{N}{2} + 1]}{2} & ext{if N is even} \end{array}
ight.$$

• The **interquartile range** is the difference between the maximum and the minimum value from the middle half of the distribution

$$IQR = Q_3 - Q_1$$

Inference

- In Statistics, we view variables as a given realization of a **data generating process**
 - Hence, the **mean** is what we call an **empirical moment**, which is an **estimation**...
 - ... of the **expected value**, the **theoretical moment** of the DGP we're interested in
- To know how confident we can be in this estimation, we need to compute a confidence interval

$$[ar{x} - t_{n-1,\ 97.5\%} imes rac{\mathrm{SD}(x)}{\sqrt{n}}; \ ar{x} + t_{n-1,\ 97.5\%} imes rac{\mathrm{SD}(x)}{\sqrt{n}}]$$

- \circ It gets **larger** as the **variance** of the distribution of x increases
- \circ And gets **smaller** as the **sample size** n increases

Packages

library(dplyr)

Main dplyr functions

Function	Meaning
mutate()	Modify or create a variable
select()	Keep a subset of variables
filter()	Keep a subset of observations
arrange()	Sort the data
group_by()	Group the data
summarise()	Summarizes variables into 1 observation per group

Merge data

```
a <- data.frame(x = c(1, 2, 3), y = c("a", "b", "c"))
b <- data.frame(x = c(4, 5, 6), y = c("d", "e", "f"))
c <- data.frame(x = 1:6, z = c("alpha", "bravo", "charlie", "delta", "echo", "foxtrot"))
a %>% bind_rows(b) %>% left_join(c, by = "x")
```

xyz1aalpha2bbravo3ccharlie4ddelta5eecho6ffoxtrot

Reshape data

country	year	share_tertiary	share_gdp
FRA	2015	44.69	3.40
USA	2015	46.52	3.21

data %>% pivot_longer(c(share_tertiary, share_gdp), names_to = "Variable", values_to = "Value")

country	year	Variable	Value
FRA	2015	share_tertiary	44.69
FRA	2015	share_gdp	3.40
USA	2015	share_tertiary	46.52
USA	2015	share_gdp	3.21

The 3 core components of the ggplot() function

Component	Contribution	Implementation
Data	Underlying values	ggplot(data, data %>% ggplot(.,
Mapping	Axis assignment	aes(x = V1, y = V2,))
Geometry	Type of plot	+ geom_point() + geom_line() +

• Any **other element** should be added with a **+ sign**

```
ggplot(data, aes(x = V1, y = V2)) +
  geom_point() + geom_line() +
  anything_else()
```


Main customization tools

Item to customize	Main functions
Axes	scale_[x/y]_[continuous/discrete]
Baseline theme	theme_[void/minimal//dark]()
Annotations	geom_[[h/v]line/text](), annotate()
Theme	theme(axis.[line/ticks].[x/y] =,

Main types of geometry

Geometry	Function	
Bar plot	geom_bar()	
Histogram	geom_histogram()	
Area	geom_area()	
Line	geom_line()	
Density	geom_density()	
Boxplot	geom_boxplot()	
Violin	geom_violin()	
Scatter plot	geom_point()	

Main types of aesthetics

Argument	Meaning
alpha	opacity from 0 to 1
color	color of the geometry
fill	fill color of the geometry
size	size of the geometry
shape	shape for geometries like points
linetype	solid, dashed, dotted, etc.

- If specified in the geometry
 - It will apply uniformly to every all the geometry
- If assigned to a variable **in aes**
 - it will vary with the variable according to a scale documented in legend

```
ggplot(data, aes(x = V1, y = V2, size = V3)) +
  geom_point(color = "steelblue", alpha = .6)
```


R Markdown: Three types of content

```
Report example
2 title: "Report example"
3 author: "Louis Sirugue"
4 date: "26/09/2021"
                                                Louis Sirugue
5 output: html_document
6 - ---
                                               26/09/2021
                                                                                                                     YAML header
8 - ## Overview of the data
                                               Overview of the data
10 - ```{r cars}
                                    ☆ ⊻ ▶
11 # Omit if distance >= 100
12 cars <- cars[cars$dist < 100, ]</pre>
13 names(cars)
                                                 cars <- cars[cars$dist < 100, ]
14 dim(cars)
15 c(mean(cars$speed), mean(cars$dist))
                                                 names(cars)
                                                                                                                     Code chunks
18 The dataset we consider contains two
                                                 ## [1] "speed" "dist"
   variables, speed and distance, and has `r
   dim(cars)[1] observations. The average
   speed value is 'r mean(cars$speed)' and
                                                 dim(cars)
   the average distance value is `r
   mean(cars$dist)`.
                                                 ## [1] 49 2
                                                 c(mean(cars$speed), mean(cars$dist))
                                                 ## [1] 15.22449 41.40816
                                               The dataset we consider contains two variables, speed and distance, and has 49
                                                                                                                     Text
                                               observations. The average speed value is 15.2244898 and the average distance value is
                                                41,4081633.
```

14 / 66

Useful features

→ Inline code allows to include the output of some R code within text areas of your report

Syntax

Output

→ kable() for clean html tables and datatable() to navigate in large tables

```
kable(results_table)
datatable(results_table)
```


LaTeX for equations

- $L\!T_E\!X$ is a convenient way to display **mathematical** symbols and to structure **equations**
 - The syntax is mainly based on backslashes \ and braces \{}
- → What you **type** in the text area: \$x \neq \frac{\alpha \times \beta}{2}\$
- ightharpoonup What is **rendered** when knitting the document: $x
 eq rac{lpha imes eta}{2}$

To include a LaTeX equation in R Markdown, you simply have to surround it with the \$ sign

The mean formula with one \$ on each side

→ For inline equations

$$\overline{x} = rac{1}{N} \sum_{i=1}^N x_i$$

The mean formula with two \$ on each side

→ For large/emphasized equations

$$\overline{x} = rac{1}{N} \sum_{i=1}^N x_i$$

- 1.1. Definition
- 1.2. Covariance
- 1.3. Correlation

2. Univariate regressions

- 2.1. Introduction to regressions
- 2.2. Coefficients estimation

3. Binary variables

- 3.1. Binary dependent variables
- 3.2. Binary independent variables

4. Wrap up!

Today: We start Econometrics!

1. Joint distributions

- 1.1. Definition
- 1.2. Covariance
- 1.3. Correlation

1.1. Definition

- The **joint distribution** shows the **values** and associated **frequencies** for **two variables** simultaneously
 - Remember how the **density** could represent the distribution of a **single variable**

1.1. Definition

- The **joint distribution** shows the **values** and associated **frequencies** for **two variables** simultaneously
 - Remember how the **density** could represent the distribution of a **single variable**
 - The **joint density** can represent the joint distribution of **two variables**

1.2. Covariance

- When describing a single distribution, we're interested in its spread and central tendency
- When describing a **joint distribution**, we're interested in the **relationship** between the two variables
 - This can be characterized by the *covariance*

$$\mathrm{Cov}(x,y) = rac{1}{N} \sum_{i=1}^N (x_i - ar{x})(y_i - ar{y})$$

If **y** tends to be **large** relative to its mean when **x** is **large** relative to its mean, their **covariance** is **positive**

Conversely, if **one** tends to be **large** when the **other** tends to be **low**, the **covariance** is **negative**

1.2. Covariance

1.2. Covariance

$$\operatorname{Cov}(X,a) = 0$$
 $\operatorname{Cov}(X,X) = \operatorname{Var}(X)$ $\operatorname{Cov}(X,Y) = \operatorname{Cov}(Y,X)$ $\operatorname{Cov}(aX,bY) = ab\operatorname{Cov}(X,Y)$ $\operatorname{Cov}(X+a,Y+b) = \operatorname{Cov}(X,Y)$ $\operatorname{Cov}(aX+bY,cW+dZ) = ac\operatorname{Cov}(X,W) + ad\operatorname{Cov}(X,Z) + bc\operatorname{Cov}(Y,W) + bd\operatorname{Cov}(Y,Z)$

1.3. Correlation

- One disadvantage of the **covariance** is that is it **not standardized**
 - You **cannot** directly **compare** the covariance of two pairs of completely different variables
 - Given distance variables will have a larger covariance in centimeters than in meters
 - ightharpoonup Theoretically the **covariance** can take **values** from $-\infty$ to $+\infty$
- ullet To **net out** the covariance from the **unit** of the data, we can **divide** it by $\mathrm{SD}(x) imes\mathrm{SD}(y)$
 - We call this **standardized** measure the **correlation**
 - o Correlations coefficients are **comparable** because they are independent from the unit of the data

$$\mathrm{Corr}(x,y) = rac{\mathrm{Cov}(x,y)}{\mathrm{SD}(x) imes \mathrm{SD}(y)}$$

 \rightarrow The **correlation** coefficient is bounded between **values** from -1 to 1

1.3. Correlation

→ But a same correlation can hide very different relationships

→ Covariance and correlation in R

```
x \leftarrow c(50, 70, 60, 80, 60)

y \leftarrow c(10, 30, 20, 30, 40)
```

• The **covariance** can be obtain with the function cov()

```
cov(x, y)
```

[1] 70

• The **correlation** can be obtain with the function cor()

```
cor(x, y)
```

[1] 0.5384615

Overview

1. Joint distributions ✓

- 1.1. Definition
- 1.2. Covariance
- 1.3. Correlation

2. Univariate regressions

- 2.1. Introduction to regressions
- 2.2. Coefficients estimation

3. Binary variables

- 3.1. Binary dependent variables
- 3.2. Binary independent variables

4. Wrap up!

Overview

1. Joint distributions ✓

- 1.1. Definition
- 1.2. Covariance
- 1.3. Correlation

2. Univariate regressions

- 2.1. Introduction to regressions
- 2.2. Coefficients estimation

2.1. Introduction to regressions

Consider the following dataset

```
ggcurve <- read.csv("ggcurve.csv")
kable(head(ggcurve, 5), "First 5 rows")</pre>
```

First 5 rows			
ige	gini		
0.15	0.38		
0.17	0.33		
0.18	0.38		
0.19	0.46		
0.26	0.44		
	ige		

The data contains **2 variables** at the **country level**:

- 1. **IGE:** Intergenerational elasticity, which captures the % average increase in child income for a 1% increase in parental income
- 2. **Gini:** Gini index of income inequality between0: everybody has the same income1: a single individual has all the income

2.1. Introduction to regressions

• To investigate the **relationship** between these two variables we can start with a **scatterplot**

```
ggplot(ggcurve , aes(x = gini, y = ige, label = country)) + geom_text()
```


2.1. Introduction to regressions

- We see that the two variables are **positively correlated** with each other:
 - When **one** tends to be **high** relative to its mean, **the other as well**
 - When **one** tends to be **low** relative to its mean, **the other as well**

```
cor(ggcurve$gini, ggcurve$ige)
```

```
## [1] 0.6517277
```

- The **correlation** coefficient is equal to **.65**
 - Remember that the correlation can take values from -1 to 1
 - Here the correlation is indeed positive and fairly strong
- But how useful is this for real-life applications? We may want more **practical** information:
 - \circ Like by how much y is **expected** to **increas**e for a given change in x
 - This is of particular interest for economists and **policy** makers

2.1. Introduction to regressions

• Consider these two relationships:

- → One is less noisy but flatter
- → One is noisier but steeper

Both have a correlation of .75

2.1. Introduction to regressions

• Consider these two relationships:

But a given increase in x is not associated with a same increase in y!

2.1. Introduction to regressions

- Knowing that income inequality is **negatively correlated** with intergenerational mobility is one thing
- But how much more intergenerational mobility could we expect for a given reduction in inequality?
 - We need to characterize the "steepness" of the relationship!
- It is usually the **type of questions** we're interested in:
 - How much more should I expect to earn for an additional year of education?
 - By how many years would life expectancy be expected to decrease for a given increase in air pollution?
 - By how much would test scores increase for a given decrease in the number of students per teacher?
- And once again, this is typically what is of interest for **policymakers**
 - \rightarrow But how to compute this expected change in y for a given change of x?

2.2. Coefficients estimation

- The idea is to find the **line that fits the data** the best
 - Such that its **slope** can indicate how we **expect y to change** if we **increase x by 1** unit

2.2. Coefficients estimation

• But how do we find that line?

2.2. Coefficients estimation

• We try to **minimize the distance** between each point and our line

2.2. Coefficients estimation

Take for instance the 20th observation: Peru

And consider the following **notations**:

- ullet We denote y_i the ige of the $i^{
 m th}$ country
- ullet We denote x_i the gini of the $i^{
 m th}$ country
- ullet We denote $\widehat{y_i}$ the value of the y coordinate of our line for $x=x_i$
- o The distance between the $i^{
 m th}$ y value and the line is $y_i \widehat{y_i}$
 - We label that distance $\widehat{\varepsilon_i}$

2.2. Coefficients estimation

• $\widehat{\varepsilon_i}$ being the distance between a point y_i and its corresponding value on the line $\widehat{y_i}$, we can write:

$$y_i = \widehat{y_i} + \widehat{arepsilon_i}$$

• And because $\widehat{y_i}$ is a **straight line**, it can be expressed as

$$\widehat{y_i} = \hat{lpha} + \hat{eta} x_i$$

- Where:
 - \circ $\hat{\alpha}$ is the **intercept**
 - $\circ \hat{\beta}$ is the **slope**

2.2. Coefficients estimation

Combining these two definitions yields the equation:

$$y_i = \hat{lpha} + \hat{eta} x_i + \widehat{arepsilon_i} \left\{ egin{array}{ll} y_i = \widehat{y_i} + \widehat{arepsilon_i} & ext{ Definition of distance} \ \widehat{y_i} = \hat{lpha} + \hat{eta} x_i & ext{ Definition of the line} \end{array}
ight.$$

• Depending on the values of $\hat{\alpha}$ and $\hat{\beta}$, the value of every $\hat{\varepsilon_i}$ will change

Attempt 1: $\hat{\alpha}$ is too high and $\hat{\beta}$ is too low $\rightarrow \hat{\varepsilon}_i$ are large

Attempt 2: $\hat{\alpha}$ is too low and $\hat{\beta}$ is too high $\rightarrow \hat{\varepsilon_i}$ are large

Attempt 3: both $\hat{\alpha}$ and $\hat{\beta}$ seem right $\rightarrow \hat{\varepsilon_i}$ are low

2.2. Coefficients estimation

• We want to find the values of $\hat{\alpha}$ and $\hat{\beta}$ that **minimize** the overall **distance** between the points and the line

$$\min_{\hat{lpha},\hat{eta}} \sum_{i=1}^n \widehat{arepsilon}_i^2$$

- \circ Note that we square $\widehat{\varepsilon_i}$ to avoid that its positive and negative values compensate
- This method is what we call Ordinary Least Squares (OLS)

• To solve this **optimization problem**, we need to express $\widehat{arepsilon}_i$ it in terms of alpha \hat{lpha} and \hat{eta}

$$egin{aligned} y_i &= \hat{lpha} + \hat{eta} x_i + \widehat{arepsilon_i} \ &\iff \ \widehat{arepsilon_i} &= y_i - \hat{lpha} - \hat{eta} x_i \end{aligned}$$

2.2. Coefficients estimation

And our minimization problem writes

$$egin{aligned} \min_{\hat{lpha},\hat{eta}} \sum_{i=1}^n (y_i - \hat{lpha} - \hat{eta} x_i)^2 \ rac{\partial}{\partial \hat{lpha}} &= 0 \iff -2 \sum_{i=1}^n (y_i - \hat{lpha} - \hat{eta} x_i) = 0 \ rac{\partial}{\partial \hat{eta}} &= 0 \iff -2 x_i \sum_{i=1}^n (y_i - \hat{lpha} - \hat{eta} x_i) = 0 \end{aligned}$$

Rearranging the first equation yields

$$\sum_{i=1}^n y_i - n\hat{lpha} - \sum_{i=1}^n \hat{eta} x_i = 0 \iff \hat{lpha} = ar{y} - \hat{eta} ar{x}_i$$

2.2. Coefficients estimation

• Replacing \hat{lpha} in the second equation by its new expression writes

$$-2x_i\sum_{i=1}^n(y_i-\hat{lpha}-\hat{eta}x_i)=0 \iff -2x_i\sum_{i=1}^n\left[y_i-(ar{y}-\hat{eta}ar{x})-\hat{eta}x_i
ight]=0.$$

And by rearranging the terms we obtain

$$\hat{eta} = rac{\sum_{i=1}^{n}(x_i - ar{x})(y_i - ar{y})}{\sum_{i=1}^{n}(x_i - ar{x})^2}.$$

ullet Notice that multiplying the nominator and the denominator by 1/n yields:

$$\hat{eta} = rac{ ext{Cov}(x_i,y_i)}{ ext{Var}(x_i)} \hspace{1cm} ; \hspace{1cm} \hat{lpha} = ar{y} - rac{ ext{Cov}(x_i,y_i)}{ ext{Var}(x_i)} imes ar{x}$$

1) Import <code>ggcurve.csv</code> and compute the \hat{lpha} and \hat{eta} coefficients of that equation:

$$ext{IGE}_i = \hat{lpha} + \hat{eta} imes ext{gini}_i + \widehat{arepsilon}_i$$

- 2) Create a new variable in the dataset for $\widehat{\mathrm{IGE}}$
- 3) Plot your results (scatter plot + line)

Hints: You can use different y variables for different geometries by specifying the mapping within the geometry function: $geom_point(aes(y = y))$

$$\hat{eta} = rac{ ext{Cov}(x_i, y_i)}{ ext{Var}(x_i)} \qquad \qquad \hat{lpha} = ar{y} - rac{ ext{Cov}(x_i, y_i)}{ ext{Var}(x_i)} imes ar{x}$$

You've got 10 minutes!

Solution

1) Import <code>ggcurve.csv</code> and compute the \hat{lpha} and \hat{eta} coefficients of that equation:

```
# Read the data
ggcurve <- read.csv("ggcurve.csv")
# Compute beta
beta <- cov(ggcurve$gini, ggcurve$ige) / var(ggcurve$gini)
# Compute alpha
alpha <- mean(ggcurve$ige) - (beta * mean(ggcurve$gini))</pre>
```

```
c(alpha, beta)
## [1] -0.09129311 1.01546204
```

2) Create a new variable in the dataset for $\widehat{\mathrm{IGE}}$

```
ggcurve <- ggcurve %>%
mutate(fit = alpha + beta * gini)
```

Solution

3) Plot your results (scatter plot + line)

```
ggplot(ggcurve, aes(x = gini)) +
  geom_point(aes(y = ige)) + geom_line(aes(y = fit))
```


2.2. Coefficients estimation

- As usual there are **functions** to do that **in R**
- **Im()** to estimate regression coefficients
- It has two main **arguments**:
 - ∘ Formula: written as y ~ x
 - **Data:** where y and x are

```
lm(ige ~ gini, ggcurve)
```

```
##
## Call:
## lm(formula = ige ~ gini, data = ggcurve)
##
## Coefficients:
## (Intercept) gini
## -0.09129 1.01546
```

• geom_smooth() to plot the fit

```
ggplot(ggcurve, aes(x = gini, y = ige)) +
  geom_point() +
  geom_smooth(method = "lm", formula = y ~ x)
```


Vocabulary

• This equation we're working on is called a **regression model**

$$y_i = \hat{lpha} + \hat{eta} x_i + \widehat{arepsilon}_i$$

- \circ We say that we **regress** y **on** x to find the coefficients \hat{lpha} and \hat{eta} that characterize the regression line
- \circ We often call $\hat{\alpha}$ and $\hat{\beta}$ parameters of the regression because we tune them to fit our model to the data
- We also have different names for the x and y variables
 - *y* is called the **dependent** or **explained** variable
 - $\circ x$ is called the **independent** or **explanatory** variable
- We call $\widehat{\varepsilon_i}$ the **residuals** because it is what is left after we fitted the data the best we could
- And $\hat{y_i}=\hat{lpha}+\hat{eta}x_i$, i.e., the value on the regression line for a given x_i are called the **fitted values**

Overview

1. Joint distributions ✓

- 1.1. Definition
- 1.2. Covariance
- 1.3. Correlation

2. Univariate regressions ✓

- 2.1. Introduction to regressions
- 2.2. Coefficients estimation

3. Binary variables

- 3.1. Binary dependent variables
- 3.2. Binary independent variables

4. Wrap up!

Overview

1. Joint distributions ✓

- 1.1. Definition
- 1.2. Covariance
- 1.3. Correlation

2. Univariate regressions ✓

- 2.1. Introduction to regressions
- 2.2. Coefficients estimation

3. Binary variables

- 3.1. Binary dependent variables
- 3.2. Binary independent variables

- **So far** we've considered only **continuous variables** in our regression models
 - But what if our dependent variable is discrete?
- Consider that we have data on candidates to a job:
 - Their Baccalauréat grade (/20)
 - Whether they got accepted

3.1. Binary dependent variables

- Even if the **outcome variable** is binary we can regress it on the grade variable
 - We can convert it into a **dummy** variable, a variable taking either the value **0 or 1**
 - o Here consider a dummy variable taking the value 1 if the person was accepted

$$1\{y_i = ext{Accepted}\} = \hat{lpha} + \hat{eta} imes ext{Grade}_i + \hat{arepsilon_i}$$

→ How would you interpret the beta coefficient from this regression?

- The **fitted values** can be viewed as the **probability** to be accepted for a given grade
 - $\circ \;\; \hat{eta}$ is thus by how much this probability would vary on expectation for a 1 point increase in the grade
 - That's why we call OLS regression models with a binary outcome **Linear** *Probability* **Models**

- But what kind of **problems** could we encounter with **such models?**
 - \circ What would be the $\hat{\alpha}$ coefficient here?
 - And what's the probability to be accepted for a grade of 18?

- With an LPM you can end up with "probabilities" that are lower than 0 and greater than 1
 - **Interpretation** is only **valid** for values of x sufficiently **close to the mean**
 - Keep that in mind and be **careful** when interpreting the results of an LPM

3.2. Binary independent variables

- Now consider that we have individual **data** containing
 - The **sex**
 - The height (centimeters)
- So the situation is different
 - We used to have a **binary dependent variable:**

$$1\{y_i = ext{Accepted}\} = \hat{lpha} + \hat{eta} imes ext{Grade}_i + \hat{arepsilon}_i$$

• We now have a **binary independent variable:**

$$ext{Height}_i = \hat{lpha} + \hat{eta} imes 1\{ ext{Sex}_i = ext{Male}\} + \hat{arepsilon_i}$$

ightharpoonup How would you interpret the coefficient \hat{eta} from this regression?

- If the sex variable was **continuous** it would be the expected increase in height for a "1 unit increase" in sex
 - Here the **"1 unit increase"** is switching from 0 to 1, i.e. **from female to male**
 - \circ With that in mind, how would you interpret the coefficient \hat{eta} ?

- If I replace the point geometry by the corresponding **boxplots**
 - What this "1 unit increase" corresponds to should be clearer
 - \circ The coefficient \hat{eta} is actually the **difference** between the **average height** for males and females

$$\overline{ ext{Height}_{[ext{Sex}_i= ext{Female}]}}=165$$

$$\overline{ ext{Height}_{ ext{[Sex}_i= ext{Male]}}}=176$$

$$egin{aligned} ext{Height}_i &= \hat{lpha} + \hat{eta} imes 1\{ ext{Sex}_i = ext{Male}\} + \hat{arepsilon_i} \ & \hat{lpha} = 165 & \hat{eta} = 11 \end{aligned}$$

$$ext{Height}_i = \hat{lpha} + \hat{eta} imes 1\{ ext{Sex}_i = ext{Female}\} + \hat{arepsilon_i}$$
 $\hat{lpha} = 176$ $\hat{eta} = -11$

3.2. Binary independent variables

• In terms of **fitted values:**

$$ext{Height}_i = \hat{lpha} + \hat{eta} imes 1\{ ext{Sex}_i = ext{Male}\} + \hat{arepsilon}_i$$

• We now have $\hat{\alpha}$ and $\hat{\beta}$:

$$\mathrm{Height}_i = 165 + 11 imes 1\{\mathrm{Sex}_i = \mathrm{Male}\} + \hat{arepsilon_i}$$

• The fitted values write:

$$\widehat{\mathrm{Height}}_i = 165 + 11 imes 1\{\mathrm{Sex}_i = \mathrm{Male}\}$$

• When the dummy equals 0 (females):

$$egin{aligned} \widehat{ ext{Height}}_i &= 165 + 11 imes 0 \ &= 165 = \overline{ ext{Height}}_{ ext{[Sex}_i = ext{Female]}} \end{aligned}$$

• When the dummy equals 1 (males):

$$egin{aligned} \widehat{ ext{Height}}_i &= 165 + 11 imes 1 \ &= 176 = \overline{ ext{Height}_{[ext{Sex}_i = ext{Male}]}} \end{aligned}$$

Overview

1. Joint distributions ✓

- 1.1. Definition
- 1.2. Covariance
- 1.3. Correlation

2. Univariate regressions ✓

- 2.1. Introduction to regressions
- 2.2. Coefficients estimation

3. Binary variables ✓

- 3.1. Binary dependent variables
- 3.2. Binary independent variables

4. Wrap up!

4. Wrap up!

1. Joint distribution

The **joint distribution** shows the possible **values** and associated **frequencies** for **two variables** simultaneously

4. Wrap up!

1. Joint distribution

- → When describing a joint distribution, we're interested in the relationship between the two variables
- The **covariance** quantifies the joint deviation of two variables from their respective mean
 - \circ It can take values from $-\infty$ to ∞ and depends on the unit of the data

$$ext{Cov}(x,y) = rac{1}{N} \sum_{i=1}^N (x_i - ar{x})(y_i - ar{y}).$$

- The **correlation** is the covariance of two variables divided by the product of their standard deviation
 - $\circ~$ It can take values from -1 to 1 and is independent from the unit of the data

$$\operatorname{Corr}(x,y) = rac{\operatorname{Cov}(x,y)}{\operatorname{SD}(x) imes \operatorname{SD}(y)}$$

#

4. Wrap up!

2. Regression

• This can be expressed with the **regression** equation:

$$y_i = \hat{lpha} + \hat{eta} x_i + \hat{arepsilon_i}$$

• Where $\hat{\alpha}$ is the **intercept** and $\hat{\beta}$ the **slope** of the **line** $\hat{y_i} = \hat{\alpha} + \hat{\beta}x_i$, and $\hat{\varepsilon_i}$ the **distances** between the points and the line

$$\hat{eta} = rac{ ext{Cov}(x_i, y_i)}{ ext{Var}(x_i)}$$

$$\hat{lpha}=ar{y}-\hat{eta} imesar{x}$$

• \hat{lpha} and \hat{eta} minimize $\hat{arepsilon_i}$

Ħ

3. Binary variables

Binary **dependent** variables

- The **fitted values** can be viewed as **probabilities**
 - \circ \hat{eta} is the expected increase in the probability that y=1 for a one unit increase in x

• We call that a **Linear Probability Model**

Binary **independent** variables

- The x variable should be viewed as a **dummy 0/1**
 - $\circ \;\; \hat{eta}$ is the difference between the average y for the group x=1 and the group x=0

