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Quick reminder

1. Joint distribution

The joint distribution shows the possible values and associated frequencies for two variables simultaneously
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Quick reminder

1. Joint distribution

➜ When describing a joint distribution, we're interested in the relationship between the two variables

The covariance quantifies the joint deviation of two variables from their respective mean
It can take values from  to  and depends on the unit of the data

The correlation is the covariance of two variables divided by the product of their standard deviation
It can take values from  to  and is independent from the unit of the data

−∞ ∞

Cov(x, y) =
N

∑
i=1

(xi − x̄)(yi − ȳ)
1

N

−1 1

Corr(x, y) =
Cov(x, y)

SD(x) × SD(y)
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## 

## Call:

## lm(formula = y ~ x, data = data)

## 

## Coefficients:

## (Intercept)            x  

##    -0.09129      1.01546

This can be expressed with the regression
equation:

Where  is the intercept and  the slope of the
line , and  the distances between
the points and the line

 and  minimize 

Quick reminder

2. Regression

yi = α̂ + β̂xi + ε̂i

α̂ β̂

ŷi = α̂ + β̂xi ε̂i

β̂ =
Cov(xi, yi)

Var(xi)

α̂ = ȳ − β̂ × x̄

α̂ β̂ ε̂i
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Binary dependent variables

The fitted values can be viewed as probabilities
 is the expected increase in the probability

that  for a one unit increase in 

We call that a Linear Probability Model

Binary independent variables

The  variable should be viewed as a dummy 0/1
 is the difference between the average  for

the group  and the group 

Quick reminder

3. Binary variables

β̂
y = 1 x

x

β̂ y

x = 1 x = 0
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Warm up practice

1) Open the asec.csv data containing sex, race, weekly work hours, and annual earnings ($)

2) Regress the earnings variable on the sex variable

3) Check that the slope coefficient is equal to the difference between male and female average earnings

You've got 10 minutes!
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Solution

1) Open the asec.csv data containing sex, race, weekly work hours, and annual earnings ($)

asec <- read.csv("asec.csv")

2) Regress the earnings variable on the sex variable

lm(Earnings ~ Sex, asec)

## 

## Call:

## lm(formula = Earnings ~ Sex, data = asec)

## 

## Coefficients:

## (Intercept)      SexMale  

##       50915        21612
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Solution

3) Check that the slope coefficient is equal to the difference between male and female average earnings

asec %>% 

# Group the data by sex

  group_by(Sex) %>%

# Summarise mean earnings -> 2x2 dataset

  summarise(Mean = mean(Earnings)) %>%

# Put means in columns instead of rows -> 1x2 dataset

  pivot_wider(names_from = Sex, values_from = Mean) %>%

# Compute the difference in means

  mutate(Difference = Male - Female)

## # A tibble: 1 x 3

##   Female   Male Difference

##    <dbl>  <dbl>      <dbl>

## 1 50915. 72527.     21612.
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1. Adding variables
1.1. Continuous variables
1.2. Discrete variables

2. Control variables
2.1. Motivation
2.2. Discrete controls
2.3. Continuous controls

3. Interactions
3.1. Motivation
3.2. Discrete interactions
3.3. Continuous interactions

4. Wrap up!

Today: Multivariate regressions
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1. Adding variables
1.1. Continuous variables
1.2. Discrete variables

Today: Multivariate regressions
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So far we focused on two-variable relationships What about three variable? (pivot the plot)

1. Adding variables

1.1. Continuous variables
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In this case we must fit a plane
It is characterized by 3 parameters
And can be expressed as:

 is still the intercept
The value of  (height) when 

And now there are 2 slopes
 along the  axis and  along the  axis

1. Adding variables

1.1. Continuous variables

0.3

0.4

0.5

ige

yi = α̂ + β̂1x1,i + β̂2x2,i + ε̂i

α̂
ŷ x1 = x2 = 0

β̂1 x1 β̂2 x2
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1. Adding variables

1.1. Continuous variables

The same applies with more than 2 independent variables
We would fit a hyperplane with as many dimension as  variables
We would obtain one intercept and one slope per  variables

We can estimate the parameters of these hyperplanes in lm()
Additional variables must be introduced after a + sign

lm(ige ~ gini + third_variable, ggcurve)

## 

## Call:

## lm(formula = ige ~ gini + third_variable, data = ggcurve)

## 

## Coefficients:

##    (Intercept)            gini  third_variable  

##       -0.09536         0.98153         0.01122

x
x

yi = α̂ + β̂1x1,i + β̂2x2,i+. . . +β̂kxk,i + ε̂i
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Take for instance the race variable:

asec %>% 

  group_by(Race) %>% 

  tally()

## # A tibble: 3 x 2

##   Race      n

##   <chr> <int>

## 1 Black  6835

## 2 Other  6950

## 3 White 50551

How can we use this variable
as an independent variable

in our regression framework?

1. Adding variables

1.2. Discrete variables

So far we've been working with binary categorical variables:
Accepted vs. Rejected, Male vs. Female
But what about discrete variables with more than two categories?
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Sex Male Race Black Other

Female 0 White 0 0

Female 0 White 0 0

Female 0 Black 1 0

Male 1 Black 1 0

Male 1 Other 0 1

Male 1 Other 0 1

➜ But why do we omit one category every time?

Because it would be redundant
We only need 2 dummies for 3 groups:

White: Black = 0 & Other = 0
Black: Black = 1 & Other = 0
Other: Black = 0 & Other = 1

 is the expected  when 
Thus is does the job for the omitted groups!
This group is called the reference group

 are interpreted relative to that group

1. Adding variables

1.2. Discrete variables

Remember how we converted our 2-category variable into 1 dummy variable
We can convert an n-category variable into n-1 dummy variables

α̂ ŷ xk = 0 ∀k

β̂k
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2-category variable 3-category variable

1. Adding variables

1.2. Discrete variables

10.5

10.55

10.6

10.65
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## 

## Call:

## lm(formula = Earnings ~ Race, data = asec)

## 

## Coefficients:

## (Intercept)    RaceOther    RaceWhite  

##       50577        17477        12303

Average by group
Race Mean earnings

Black 50577.49

Other 68054.63

White 62880.49

1. Adding variables

1.2. Discrete variables

This plane can be expressed as:

And the average incomes for each group equal:
Black: 
Other: 
White: 

Earningsi = α̂ + β̂11{Racei = Other} + β̂21{Racei = White} + ε̂i

α̂ + 0β̂1 + 0β̂2 = α̂

α̂ + 1β̂1 + 0β̂2 = α̂ + β̂1

α̂ + 0β̂1 + 1β̂2 = α̂ + β̂2
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asec <- asec %>% 

  mutate(Race_fct = relevel(as.factor(Race), 

"White"))

lm(Earnings ~ Race_fct, asec)

## 

## Call:

## lm(formula = Earnings ~ Race_fct, data = asec)

## 

## Coefficients:

##   (Intercept)  Race_fctBlack  Race_fctOther  

##         62880         -12303           5174

1. Adding variables

1.2. Discrete variables

By default, lm() sorts categories by alphabetical order
So every coefficient should be interpreted relative to the group which is first alphabetically

But usually this is not the most intuitive
You may want everything to be relative to the majority group
Or to any group that has reasons to be the reference

The relevel() function allows you to change the reference category
But it works only on factor variables
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1. Adding variables

1.2. Discrete variables

The factor class is made for variables whose values indicate different groups
Values are just arbitrary group classifiers

individuals <- as.factor(c(1, 2, 3, 4, 5))

individuals[1]

## [1] 1

## Levels: 1 2 3 4 5

With factors, R understands that the different values do not mean anything
And applying standard operations to factors does not make sense

individuals * 2

## Warning in Ops.factor(individuals, 2): '*' not meaningful for factors

## [1] NA NA NA NA NA

19 / 55

https://louissirugue.github.io/metrics_on_R/home.html


1. Adding variables

1.2. Discrete variables

What you can also do is create the dummies yourself:

asec <- asec %>%

  mutate(Black = as.numeric(Race == "Black"),

         Other = as.numeric(Race == "Other"))

lm(Earnings ~ Black + Other, asec)

## 

## Call:

## lm(formula = Earnings ~ Black + Other, data = asec)

## 

## Coefficients:

## (Intercept)        Black        Other  

##       62880       -12303         5174

➜ This might be the safest option
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1. Adding variables

1.2. Discrete variables

But a categorical variable must not be introduced as numeric in lm()

asec <- asec %>%

  mutate(num_cat = case_when(Race == "White" ~ 0,

                             Race == "Black" ~ 1,

                             Race == "Other" ~ 2))

lm(Earnings ~ num_cat, asec)

## 

## Call:

## lm(formula = Earnings ~ num_cat, data = asec)

## 

## Coefficients:

## (Intercept)      num_cat  

##     62093.8        119.6

➜ lm() used our categorical variable as a continuous variable
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1. Adding variables

1.2. Discrete variables

Use the factor class

asec <- asec %>%

  mutate(fac_cat = as.factor(num_cat))

lm(Earnings ~ fac_cat, asec)

## 

## Call:

## lm(formula = Earnings ~ fac_cat, data = asec)

## 

## Coefficients:

## (Intercept)     fac_cat1     fac_cat2  

##       62880       -12303         5174

➜ Converting all your categorical variables into factors is also a safe option
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1. Adding variables ✔
1.1. Continuous variables
1.2. Discrete variables

2. Control variables
2.1. Motivation
2.2. Discrete controls
2.3. Continuous controls

3. Interactions
3.1. Motivation
3.2. Discrete interactions
3.3. Continuous interactions

4. Wrap up!

Overview
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1. Adding variables ✔
1.1. Continuous variables
1.2. Discrete variables

2. Control variables
2.1. Motivation
2.2. Discrete controls
2.3. Continuous controls

Overview
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2. Control variables

2.1. Motivation

But why would we include additional variables in our regressions?
The main reason is to control for potential confounders

Consider estimating the relationship between income and exposure air pollution in the Paris region

You would probably expect that 
Meaning that higher income earners live in less polluted areas
But the closer from Paris the higher the rents and the closer the ring-road
This phenomenon might counteract this effect and pull  towards 0

But how to remove the impact that distance from Paris has on the relationship?
Including it in the regression would make the corresponding coefficient absorb the confounding effect
In that case we would call distance a control variable

Pollutioni = α̂1 + β̂1Incomei + ε̂i

β̂1 < 0

β̂1

Pollutioni = α̂2 + β̂2Incomei + β̂3Distancei + ϵ̂i
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2. Control variables

2.2. Discrete

The most common control variable is probably sex/gender
It may play a role in the relationship between earnings and hours worked for instance
The fact that women work part time more often and earn less contribute to the relationship
Just like distance did in the previous example
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2. Control variables

2.2. Discrete

The most common control variable is probably sex/gender
It may play a role in the relationship between earnings and hours worked for instance
The fact that women work part time more often and earn less contribute to the relationship
Just like distance did in the previous example
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2. Control variables

2.2. Discrete

The most common control variable is probably sex/gender
It may play a role in the relationship between earnings and hours worked for instance
The fact that women work part time more often and earn less contribute to the relationship
Just like distance did in the previous example
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2. Control variables

2.2. Discrete

The most common control variable is probably sex/gender
It may play a role in the relationship between earnings and hours worked for instance
The fact that women work part time more often and earn less contribute to the relationship
Just like distance did in the previous example
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Because being a male is positively correlated
with both  and 

Controlling for sex would solve that problem by
absorbing this effect

Controlling for a discrete variable amounts to
allow one intercept per category

Giving two parallel fitted lines which are the
intersections of the plane and the scatterplots

2. Control variables

2.2. Discrete

➜ The relationship is indeed inflated by the sex variable

x y

30 / 55

https://louissirugue.github.io/metrics_on_R/home.html


Because being a male is positively correlated
with both  and 

Controlling for sex would solve that problem by
absorbing this effect

Controlling for a discrete variable amounts to
allow one intercept per category

Giving two parallel fitted lines which are the
intersections of the plane and the scatterplots

2. Control variables

2.2. Discrete

➜ The relationship is indeed inflated by the sex variable

x y
1400

1600

color
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Graphical counterpart

: Intercept of the reference group

: Common slope

: Gap between the two lines

: Intercept of the other group

2. Control variables

2.2. Discrete

## (Intercept)       Hours     SexMale 

##  1019.34269    11.86326   200.98782

Earningsi = α̂ + β̂1Hoursi + β̂21{Sexi = Male} + ε̂i

α̂

β̂1

β̂2

α̂ + β̂2
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2. Control variables

2.2. Discrete

We can obtain this common slope by:
1. Demeaning earnings and hours by group
2. Regressing the demeaned earnings on the hours
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2. Control variables

2.2. Discrete

Note that once we control for third variable
1. As we move along the x axis, this third variable remains constant
2. Here, as the number of hours increases the probability to be a male does not increase anymore
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2. Control variables

2.3. Continuous

The same idea apply when we control for continuous variables
Including it in the regression allows to account for another dimension
Such that when  moves this variable remains constant
This nets out the relationship between  and  from the potential confounding effect of this variable
This is why we call it controlling for something

x
x y

0.3

0.4

0.5

ige
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Practice

1) Using the asec data, regress (yearly) earnings on (weekly) hours worked

2) Regress earnings on hours worked controlling for sex

3) Interpret the difference between the results from 1) and 2)

You've got 8 minutes!
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Solution

1) Using the asec data, regress (yearly) earnings on (weekly) hours worked

lm(Earnings ~ Hours, asec)$coefficients

## (Intercept)       Hours 

##   -20038.85     2077.79

2) Regress earnings on hours worked controlling for sex

lm(Earnings ~ Hours + Sex, asec)$coefficients

## (Intercept)       Hours     SexMale 

##  -22296.150    1953.829   13794.385
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The slope is still positive less steep

In the first regression as the number of
hours increases the probability to be a male
does increase as well

Because males tend to earn more this
contributes to the positive relationship
between Hours and Earnings

In the second regression, controlling for
sex allows to maintain the probability to be a
male constant along the hour axis to
remove this effect

Solution

3) Interpret the difference between the results from 1) and 2)
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1. Adding variables ✔
1.1. Continuous variables
1.2. Discrete variables

2. Control variables ✔
2.1. Motivation
2.2. Discrete controls
2.3. Continuous controls

3. Interactions
3.1. Motivation
3.2. Discrete interactions
3.3. Continuous interactions

4. Wrap up!

Overview
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1. Adding variables ✔
1.1. Continuous variables
1.2. Discrete variables

2. Control variables ✔
2.1. Motivation
2.2. Discrete controls
2.3. Continuous controls

3. Interactions
3.1. Motivation
3.2. Discrete interactions
3.3. Continuous interactions

Overview
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3. Interactions

3.1. Motivation

Now we know how to remove the confounding effect of a third variable by controlling for it
But what if the main relationship varies depending on the value of the third variable?

Let's get back to the previous example

The equation imposes that the effect of income on pollution is constant: 
But what if the relationship was actually not the same close to Paris than further away?
Maybe that the closer from Paris the larger the effect (higher segregation, ...)

But how to capture how the relationship between income and pollution varies with distance?
We should allow for it in the equation!
By adding a term that depends both on income and distance
What we use is their product, and we call that an interaction

Pollutioni = α̂ + β̂1Incomei + β̂2Distancei + ϵ̂i

β̂2

Pollutioni = α̂2 + β̂3Incomei + β̂4Distancei + β̂5(Distancei × Incomei) + ϵ̂i

41 / 55

https://louissirugue.github.io/metrics_on_R/home.html


3. Interactions

3.2. Discrete

Take for instance the following relationship between household income and the number of children
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3. Interactions

3.2. Discrete

Take for instance the following relationship between household income and the number of children
The level of education seems to play a role in the relationship
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3. Interactions

3.2. Discrete

Take for instance the following relationship between household income and the number of children
The level of education seems to play a role in the relationship
But simply controlling for education does not seem sufficient
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3. Interactions

3.2. Discrete

This is because the relationship between income and children varies with education
Interacting income with education allows to account for that
Like controlling allows for different intercepts, interacting allows for different slopes
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3. Interactions

3.2. Discrete

➜ It is clearly equivalent to regressing children on income separately per education group

Childreni = α̂A + β̂AIncomei+ Baseline equation

β̂BHighschooli + β̂CCollegei+ Allow for ≠ intercepts

Incomei × [β̂DHighschooli + β̂ECollegei]+ ε̂i Allow for ≠ slopes
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3. Interactions

3.2. Discrete

➜ It is clearly equivalent to regressing children on income separately per education group

< Highschool: 

Childreni = α̂A + β̂AIncomei+ Baseline equation

β̂BHighschooli
0

+ β̂CCollegei
0

+ Allow for ≠ Intercepts

Incomei ×
⎡
⎢
⎣

β̂DHighschooli
0

+ β̂ECollegei
0

⎤
⎥
⎦

+ ε̂i Allow for ≠ slopes

Childreni = α̂A + β̂AIncomei + ε̂i
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3. Interactions

3.2. Discrete

➜ It is clearly equivalent to regressing children on income separately per education group

Highschool: 

Childreni = α̂A + β̂AIncomei+ Baseline equation

β̂BHighschooli
1

+ β̂CCollegei
0

+ Allow for ≠ intercepts

Incomei ×
⎡
⎢
⎣

β̂DHighschooli
1

+ β̂ECollegei
0

⎤
⎥
⎦

+ ε̂i Allow for ≠ slopes

Childreni = (α̂A + β̂B) + (β̂A + β̂D)Incomei + ε̂i
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3. Interactions

3.2. Discrete

➜ It is clearly equivalent to regressing children on income separately per education group

College: 

Childreni = α̂A + β̂AIncomei+ Baseline equation

β̂BHighschooli
0

+ β̂CCollegei
1

+ Allow for ≠ intercepts

Incomei ×
⎡
⎢
⎣

β̂DHighschooli
0

+ β̂ECollegei
1

⎤
⎥
⎦

+ ε̂i Allow for ≠ slopes

Childreni = (α̂A + β̂C) + (β̂A + β̂E)Incomei + ε̂i
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3. Interactions

3.2. Discrete

➜ It is clearly equivalent to regressing children on income separately per education group

< Highschool: 
Highschool: 
College: 

Childreni = α̂A + β̂AIncomei+ Baseline equation

β̂BHighschooli + β̂CCollegei+ Allow for ≠ intercepts

Incomei × [β̂DHighschooli + β̂ECollegei]+ ε̂i Allow for ≠ slopes

Childreni = α̂A + β̂AIncomei + ε̂i

Childreni = (α̂A + β̂B) + (β̂A + β̂D)Incomei + ε̂i

Childreni = (α̂A + β̂C) + (β̂A + β̂E)Incomei + ε̂i
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3. Interactions

3.3. Continuous

The same principle applies to continuous variables:

What is the effect of a 1-unit increase in income here?

The coefficient associated with the interaction, , indicates:
By how the effect of a 1-unit increase in income on pollution varies with distance
When distance = 0 the effect of income is 
For every additional unit of distance, the effect of income on pollution increases by 

➜ Don't omit to include your interaction variable as a control in the regression

Pollutioni = α̂ + β̂1Incomei + β̂2Distancei + β̂3(Distancei × Incomei) + ϵ̂i

β̂1 + β̂3Distancei

β̂3

β̂1

β̂3
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1. Adding variables ✔
1.1. Continuous variables
1.2. Discrete variables

2. Control variables ✔
2.1. Motivation
2.2. Discrete controls
2.3. Continuous controls

3. Interactions ✔
3.1. Motivation
3.2. Discrete interactions
3.3. Continuous interactions

4. Wrap up!

Overview
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Adding a continuous variable Adding a discrete variable

4. Wrap up!

1. Multivariate regressions

Adding a second independent variable in the regression amounts to fitting a plane instead of a line
Adding a third variable would fit a hyperplane of dimension 3 and so on
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4. Wrap up!

2. Control variables

Adding a third variable  removes its potential confounding effect from the relationship between  and 
As we move along the  axis, the third variable remains constant

z x y

x

ŷi = α̂ + β̂1x + β̂2z + ε̂i
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4. Wrap up!

3. Interactions

Adding an interaction term with  allows to see how the effect of  on  varies with 
If  is discrete, it amounts to regressing  on  separately for each  group

z x y z

z y x z

ŷi = α̂ + β̂1x + β̂2z + β̂3(x × z) + ε̂i
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