Multivariate regressions

Lecture 9

Louis SIRUGUE
CPES 2 - Fall 2022

Quick reminder

1. Joint distribution

The joint distribution shows the possible values and associated frequencies for two variables simultaneously

Quick reminder

1. Joint distribution

\rightarrow When describing a joint distribution, we're interested in the relationship between the two variables

- The covariance quantifies the joint deviation of two variables from their respective mean
- It can take values from $-\infty$ to ∞ and depends on the unit of the data

$$
\operatorname{Cov}(x, y)=\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)
$$

- The correlation is the covariance of two variables divided by the product of their standard deviation
- It can take values from -1 to 1 and is independent from the unit of the data

$$
\operatorname{Corr}(x, y)=\frac{\operatorname{Cov}(x, y)}{\operatorname{SD}(x) \times \operatorname{SD}(y)}
$$

Quick reminder

2. Regression

- This can be expressed with the regression equation:

$$
y_{i}=\hat{\alpha}+\hat{\beta} x_{i}+\hat{\varepsilon_{i}}
$$

- Where $\hat{\alpha}$ is the intercept and $\hat{\beta}$ the slope of the line $\hat{y_{i}}=\hat{\alpha}+\hat{\beta} x_{i}$, and $\hat{\varepsilon_{i}}$ the distances between the points and the line

$$
\begin{gathered}
\hat{\beta}=\frac{\operatorname{Cov}\left(x_{i}, y_{i}\right)}{\operatorname{Var}\left(x_{i}\right)} \\
\hat{\alpha}=\bar{y}-\hat{\beta} \times \bar{x}
\end{gathered}
$$

- $\hat{\alpha}$ and $\hat{\beta}$ minimize $\hat{\varepsilon}_{i}$

Quick reminder

3. Binary variables

Binary dependent variables

- The fitted values can be viewed as probabilities
- $\hat{\beta}$ is the expected increase in the probability that $y=1$ for a one unit increase in x

- We call that a Linear Probability Model

Binary independent variables

- The x variable should be viewed as a dummy 0/1
- $\hat{\beta}$ is the difference between the average y for the group $x=1$ and the group $x=0$

Warm up practice

1) Open the asec.csv data containing sex, race, weekly work hours, and annual earnings (\$)
2) Regress the earnings variable on the sex variable
3) Check that the slope coefficient is equal to the difference between male and female average earnings

You've got 10 minutes!

Solution

1) Open the asec.csv data containing sex, race, weekly work hours, and annual earnings (\$)
```
asec <- read.csv("asec.csv")
```

2) Regress the earnings variable on the sex variable
```
lm(Earnings ~ Sex, asec)
```

\#\#
\#\# Call:
\#\# lm(formula = Earnings ~ Sex, data = asec)
\#\#
\#\# Coefficients:
\#\# (Intercept) SexMale
\#\# $50915 \quad 21612$

Solution

3) Check that the slope coefficient is equal to the difference between male and female average earnings
```
asec %>%
    # Group the data by sex
    group_by(Sex) %>%
    # Summarise mean earnings -> 2x2 dataset
    summarise(Mean = mean(Earnings)) %>%
    # Put means in columns instead of rows -> 1x2 dataset
    pivot_wider(names_from = Sex, values_from = Mean) %>%
    # Compute the difference in means
    mutate(Difference = Male - Female)
```

\#\# \#	A tibble: 1×3		
\#\#	Female Male Difference		
\#\#	<dbl>	<dbl>	<dbl>
\#\#	1	50915.	72527.

Today: Multivariate regressions

1. Adding variables

1.1. Continuous variables
1.2. Discrete variables
2. Control variables
2.1. Motivation
2.2. Discrete controls
2.3. Continuous controls

3. Interactions

3.1. Motivation
3.2. Discrete interactions
3.3. Continuous interactions
4. Wrap up!

Today: Multivariate regressions

1. Adding variables

1.1. Continuous variables
1.2. Discrete variables

1. Adding variables

1.1. Continuous variables

- So far we focused on two-variable relationships
- What about three variable? (pivot the plot)

1. Adding variables

1.1. Continuous variables

- In this case we must fit a plane
- It is characterized by 3 parameters
- And can be expressed as:

$$
y_{i}=\hat{\alpha}+\hat{\beta}_{1} x_{1, i}+\hat{\beta}_{2} x_{2, i}+\hat{\varepsilon_{i}}
$$

- $\hat{\alpha}$ is still the intercept
- The value of \hat{y} (height) when $x_{1}=x_{2}=0$
- And now there are $\mathbf{2}$ slopes
- $\hat{\beta}_{1}$ along the x_{1} axis and $\hat{\beta}_{2}$ along the x_{2} axis

1. Adding variables

1.1. Continuous variables

- The same applies with more than 2 independent variables
- We would fit a hyperplane with as many dimension as x variables
- We would obtain one intercept and one slope per x variables

$$
y_{i}=\hat{\alpha}+\hat{\beta}_{1} x_{1, i}+\hat{\beta}_{2} x_{2, i}+\ldots+\hat{\beta}_{k} x_{k, i}+\hat{\varepsilon_{i}}
$$

- We can estimate the parameters of these hyperplanes in Im()
- Additional variables must be introduced after a + sign

```
lm(ige ~ gini + third_variable, ggcurve)
```

```
##
## Call:
## lm(formula = ige ~ gini + third_variable, data = ggcurve)
##
## Coefficients:
\begin{tabular}{lrrr} 
\#\# & (Intercept) & gini & third_variable \\
\(\# \#\) & -0.09536 & 0.98153 & 0.01122
\end{tabular}
```


1. Adding variables

1.2. Discrete variables

- So far we've been working with binary categorical variables:
- Accepted vs. Rejected, Male vs. Female
- But what about discrete variables with more than two categories?
- Take for instance the race variable:

```
asec %>%
    group_by(Race) %>%
    tally()
## # A tibble: 3 x 2
## Race n
## <chr> <int>
## 1 Black 6835
## 2 Other 6950
## 3 White 50551
```

How can we use this variable as an independent variable in our regression framework?

1. Adding variables

1.2. Discrete variables

- Remember how we converted our 2-category variable into 1 dummy variable
- We can convert an \mathbf{n}-category variable into $\mathbf{n - 1}$ dummy variables

\rightarrow But why do we omit one category every time?

Sex	Male		Race	Black	Other
Female	0		White	0	0
Female	0		White	0	0
Female	0	Black	1	0	
Male	1	Black	1	0	
Male	1	Other	0	1	
Male	1	Other	0	1	

- Because it would be redundant
- We only need 2 dummies for 3 groups:
- White: Black = 0 \& Other = 0
- Black: Black = 1 \& Other = 0
- Other: Black $=0$ \& Other $=\mathbf{1}$
$\hat{\alpha}$ is the expected \hat{y} when $x_{k}=0 \forall k$
- Thus is does the job for the omitted groups!
- This group is called the reference group
- $\hat{\beta}_{k}$ are interpreted relative to that group

1. Adding variables

1.2. Discrete variables

2-category variable

3-category variable

1. Adding variables

1.2. Discrete variables

- This plane can be expressed as:

$$
\text { Earnings }_{i}=\hat{\alpha}+\hat{\beta}_{1} 1\left\{\text { Race }_{i}=\text { Other }\right\}+\hat{\beta}_{2} 1\left\{\text { Race }_{i}=\text { White }\right\}+\hat{\varepsilon}_{i}
$$

- And the average incomes for each group equal:
- Black: $\hat{\alpha}+0 \hat{\beta}_{1}+0 \hat{\beta}_{2}=\hat{\alpha}$
- Other: $\hat{\alpha}+1 \hat{\beta}_{1}+0 \hat{\beta}_{2}=\hat{\alpha}+\hat{\beta}_{1}$

Average by group	
Race	Mean earnings
Black	50577.49
Other	68054.63
White	62880.49

```
##
## Call:
## lm(formula = Earnings ~ Race, data = asec)
##
## Coefficients:
## (Intercept) RaceOther RaceWhite
## 50577 17477 12303
```

 - White: \(\hat{\alpha}+0 \hat{\beta}_{1}+1 \hat{\beta}_{2}=\hat{\alpha}+\hat{\beta}_{2}\)

1. Adding variables

1.2. Discrete variables

- By default, $\operatorname{Im}()$ sorts categories by alphabetical order
- So every coefficient should be interpreted relative to the group which is first alphabetically
- But usually this is not the most intuitive
- You may want everything to be relative to the majority group
- Or to any group that has reasons to be the reference
- The relevel() function allows you to change the reference category
- But it works only on factor variables

```
asec <- asec %>%
    mutate(Race_fct = relevel(as.factor(Race),
                        "White"))
lm(Earnings ~ Race_fct, asec)
```


1. Adding variables

1.2. Discrete variables

- The factor class is made for variables whose values indicate different groups
- Values are just arbitrary group classifiers

```
individuals <- as.factor(c(1, 2, 3, 4, 5))
individuals[1]
```

\#\# [1] 1
\#\# Levels: 12345

- With factors, R understands that the different values do not mean anything
- And applying standard operations to factors does not make sense

```
individuals * 2
## Warning in Ops.factor(individuals, 2): '*' not meaningful for factors
## [1] NA NA NA NA NA
```


1. Adding variables

1.2. Discrete variables

- What you can also do is create the dummies yourself:

```
asec <- asec %>%
    mutate(Black = as.numeric(Race == "Black"),
        Other = as.numeric(Race == "Other"))
```

lm(Earnings ~ Black + Other, asec)
\#\#
\#\# Call:
\#\# lm(formula = Earnings ~ Black + Other, data $=$ asec)
\#\#
\#\# Coefficients:

\#\# (Intercept)	Black	Other	
\#\#	62880	-12303	5174

\rightarrow This might be the safest option

1. Adding variables

1.2. Discrete variables

- But a categorical variable must not be introduced as numeric in $\operatorname{Im}()$

```
asec <- asec %>%
    mutate(num_cat = case_when(Race == "White" ~ 0,
                            Race == "Black" ~ 1,
                                Race == "Other" ~ 2))
```

```
lm(Earnings ~ num_cat, asec)
```

\#\#
\#\# Call:
\#\# lm(formula = Earnings ~ num_cat, data = asec)
\#\#
\#\# Coefficients:
$\begin{array}{lrr}\text { \#\# (Intercept) } & \text { num_cat } \\ \text { \#\# } & 62093.8 & 119.6\end{array}$
$\rightarrow \operatorname{Im}()$ used our categorical variable as a continuous variable

1. Adding variables

1.2. Discrete variables

- Use the factor class

```
asec <- asec %>%
    mutate(fac_cat = as.factor(num_cat))
```

lm(Earnings ~ fac_cat, asec)
\#\#
\#\# Call:
\#\# lm(formula = Earnings ~ fac_cat, data = asec)
\#\#
\#\# Coefficients:

\#\# (Intercept)	fac_cat1	fac_cat2	
$\# \#$	62880	-12303	5174

\rightarrow Converting all your categorical variables into factors is also a safe option

Overview

1. Adding variables \checkmark

1.1. Continuous variables
1.2. Discrete variables

3. Interactions

3.1. Motivation
3.2. Discrete interactions
3.3. Continuous interactions
2. Control variables
2.1. Motivation
2.2. Discrete controls
2.3. Continuous controls
4. Wrap up!

Overview

1. Adding variables \checkmark

1.1. Continuous variables
1.2. Discrete variables
2. Control variables
2.1. Motivation
2.2. Discrete controls
2.3. Continuous controls

2. Control variables

2.1. Motivation

- But why would we include additional variables in our regressions?
- The main reason is to control for potential confounders
- Consider estimating the relationship between income and exposure air pollution in the Paris region

$$
\text { Pollution }_{i}=\hat{\alpha_{1}}+\hat{\beta_{1}} \text { Income }_{i}+\hat{\varepsilon_{i}}
$$

- You would probably expect that $\hat{\beta}_{1}<0$
- Meaning that higher income earners live in less polluted areas
- But the closer from Paris the higher the rents and the closer the ring-road
- This phenomenon might counteract this effect and pull $\hat{\beta}_{1}$ towards 0
- But how to remove the impact that distance from Paris has on the relationship?
- Including it in the regression would make the corresponding coefficient absorb the confounding effect
- In that case we would call distance a control variable

$$
\text { Pollution }_{i}=\hat{\alpha_{2}}+\hat{\beta}_{2} \text { Income }_{i}+\hat{\beta}_{3} \text { Distance }_{i}+\hat{\epsilon}_{i}
$$

2. Control variables

2.2. Discrete

- The most common control variable is probably sex/gender
- It may play a role in the relationship between earnings and hours worked for instance
- The fact that women work part time more often and earn less contribute to the relationship
- Just like distance did in the previous example

2. Control variables

2.2. Discrete

- The most common control variable is probably sex/gender
- It may play a role in the relationship between earnings and hours worked for instance
- The fact that women work part time more often and earn less contribute to the relationship
- Just like distance did in the previous example

2. Control variables

2.2. Discrete

- The most common control variable is probably sex/gender
- It may play a role in the relationship between earnings and hours worked for instance
- The fact that women work part time more often and earn less contribute to the relationship
- Just like distance did in the previous example

2. Control variables

2.2. Discrete

- The most common control variable is probably sex/gender
- It may play a role in the relationship between earnings and hours worked for instance
- The fact that women work part time more often and earn less contribute to the relationship
- Just like distance did in the previous example

2. Control variables

2.2. Discrete

\rightarrow The relationship is indeed inflated by the sex variable

- Because being a male is positively correlated with both x and y
- Controlling for sex would solve that problem by absorbing this effect
- Controlling for a discrete variable amounts to allow one intercept per category
- Giving two parallel fitted lines which are the intersections of the plane and the scatterplots

2. Control variables

2.2. Discrete

\rightarrow The relationship is indeed inflated by the sex variable

- Because being a male is positively correlated with both x and y
- Controlling for sex would solve that problem by absorbing this effect
- Controlling for a discrete variable amounts to allow one intercept per category
- Giving two parallel fitted lines which are the intersections of the plane and the scatterplots

2. Control variables

2.2. Discrete

$$
\text { Earnings }_{i}=\hat{\alpha}+\hat{\beta}_{1} \text { Hours }_{i}+\hat{\beta}_{2} 1\left\{\text { Sex }_{i}=\text { Male }\right\}+\hat{\varepsilon}_{i}
$$

Graphical counterpart

$\hat{\alpha}$: Intercept of the reference group
$\hat{\beta_{1}}$: Common slope
$\hat{\beta}_{2}$: Gap between the two lines
$\hat{\alpha}+\hat{\beta}_{2}$: Intercept of the other group

2. Control variables

2.2. Discrete

- We can obtain this common slope by:

1. Demeaning earnings and hours by group
2. Regressing the demeaned earnings on the hours

2. Control variables

2.2. Discrete

- Note that once we control for third variable

1. As we move along the x axis, this third variable remains constant
2. Here, as the number of hours increases the probability to be a male does not increase anymore

2. Control variables

2.3. Continuous

- The same idea apply when we control for continuous variables
- Including it in the regression allows to account for another dimension
- Such that when x moves this variable remains constant
- This nets out the relationship between x and y from the potential confounding effect of this variable
- This is why we call it controlling for something

Practice

1) Using the asec data, regress (yearly) earnings on (weekly) hours worked
2) Regress earnings on hours worked controlling for sex
3) Interpret the difference between the results from 1) and 2)

You've got 8 minutes!

Solution

1) Using the asec data, regress (yearly) earnings on (weekly) hours worked
```
lm(Earnings ~ Hours, asec)$coefficients
```

```
## (Intercept) Hours
## -20038.85 2077.79
```

2) Regress earnings on hours worked controlling for sex
```
lm(Earnings ~ Hours + Sex, asec)$coefficients
```

```
## (Intercept)
    Hours
## -22296.150 1953.829 13794.385
    SexMale
```


Solution

3) Interpret the difference between the results from 1) and 2)

- The slope is still positive less steep
- In the first regression as the number of hours increases the probability to be a male does increase as well
- Because males tend to earn more this contributes to the positive relationship between Hours and Earnings
- In the second regression, controlling for sex allows to maintain the probability to be a male constant along the hour axis to remove this effect

Overview

1. Adding variables \checkmark
 1.1. Continuous variables
 1.2. Discrete variables

2. Control variables \checkmark
2.1. Motivation
2.2. Discrete controls
2.3. Continuous controls

3. Interactions

3.1. Motivation
3.2. Discrete interactions
3.3. Continuous interactions
4. Wrap up!

Overview

1. Adding variables \checkmark
 1.1. Continuous variables
 1.2. Discrete variables

2. Control variables \checkmark
2.1. Motivation
2.2. Discrete controls
2.3. Continuous controls

3. Interactions

3.1. Motivation
3.2. Discrete interactions
3.3. Continuous interactions

3. Interactions

3.1. Motivation

- Now we know how to remove the confounding effect of a third variable by controlling for it
- But what if the main relationship varies depending on the value of the third variable?
- Let's get back to the previous example

$$
\text { Pollution }_{i}=\hat{\alpha}+\hat{\beta}_{1} \text { Income }_{i}+\hat{\beta}_{2} \text { Distance }_{i}+\hat{\epsilon}_{i}
$$

- The equation imposes that the effect of income on pollution is constant: $\hat{\beta}_{2}$
- But what if the relationship was actually not the same close to Paris than further away?
- Maybe that the closer from Paris the larger the effect (higher segregation, ...)
- But how to capture how the relationship between income and pollution varies with distance?
- We should allow for it in the equation!
- By adding a term that depends both on income and distance
- What we use is their product, and we call that an interaction

$$
\text { Pollution }_{i}=\hat{\alpha_{2}}+\hat{\beta_{3}} \text { Income }_{i}+\hat{\beta}_{4} \text { Distance }_{i}+\hat{\beta}_{5}\left(\text { Distance }_{i} \times \text { Income }_{i}\right)+\hat{\epsilon_{i}}
$$

3. Interactions

3.2. Discrete

- Take for instance the following relationship between household income and the number of children

3. Interactions

3.2. Discrete

- Take for instance the following relationship between household income and the number of children
- The level of education seems to play a role in the relationship

3. Interactions

3.2. Discrete

- Take for instance the following relationship between household income and the number of children
- The level of education seems to play a role in the relationship
- But simply controlling for education does not seem sufficient

3. Interactions

3.2. Discrete

- This is because the relationship between income and children varies with education
- Interacting income with education allows to account for that
- Like controlling allows for different intercepts, interacting allows for different slopes

3. Interactions

3.2. Discrete

\rightarrow It is clearly equivalent to regressing children on income separately per education group

$$
\begin{aligned}
& \text { Children }_{i}=\hat{\alpha_{A}}+\hat{\beta_{A}} \text { Income }_{i}+ \\
& \hat{\beta_{B}} \text { Highschool }_{i}+\hat{\beta}_{C} \text { College }_{i}+ \\
& \text { Income }_{i} \times\left[\hat{\beta_{D}} \text { Highschool }_{i}+\hat{\beta_{E}} \text { College }_{i}\right]+\hat{\varepsilon_{i}}
\end{aligned}
$$

Baseline equation Allow for \neq intercepts

Allow for \neq slopes

3. Interactions

3.2. Discrete

\rightarrow It is clearly equivalent to regressing children on income separately per education group

< Highschool: Children $_{i}=\hat{\alpha_{A}}+\hat{\beta_{A}}$ Income $_{i}+\hat{\varepsilon_{i}}$

3. Interactions

3.2. Discrete

\rightarrow It is clearly equivalent to regressing children on income separately per education group

Highschool: Children $_{i}=\left(\hat{\alpha_{A}}+\hat{\beta_{B}}\right)+\left(\hat{\beta_{A}}+\hat{\beta_{D}}\right)$ Income $_{i}+\hat{\varepsilon_{i}}$

3. Interactions

3.2. Discrete

\rightarrow It is clearly equivalent to regressing children on income separately per education group

College: Children $_{i}=\left(\hat{\alpha_{A}}+\hat{\beta_{C}}\right)+\left(\hat{\beta_{A}}+\hat{\beta_{E}}\right)$ Income $_{i}+\hat{\varepsilon_{i}}$

3. Interactions

3.2. Discrete

\rightarrow It is clearly equivalent to regressing children on income separately per education group

$$
\begin{aligned}
& \text { Children }_{i}=\hat{\alpha_{A}}+\hat{\beta_{A}} \text { Income }_{i}+ \\
& \hat{\beta_{B}} \mathrm{Highschool}_{i}+{\hat{\beta_{C}} \text { College }_{i}+}_{+} \\
& \text {Income }_{i} \times\left[{\left.\hat{\beta_{D}} \text { Highschool }_{i}+\hat{\beta}_{E} \text { College }_{i}\right]+\hat{\varepsilon_{i}}}_{\hat{\beta}}\right.
\end{aligned}
$$

Baseline equation Allow for \neq intercepts

Allow for \neq slopes
< Highschool: Children ${ }_{i}=\hat{\alpha_{A}}+\hat{\beta_{A}}$ Income $_{i}+\hat{\varepsilon_{i}}$
Highschool: Children $_{i}=\left(\hat{\alpha_{A}}+\hat{\beta_{B}}\right)+\left(\hat{\beta_{A}}+\hat{\beta_{D}}\right)$ Income $_{i}+\hat{\varepsilon_{i}}$
College: Children $_{i}=\left(\hat{\alpha_{A}}+\hat{\beta_{C}}\right)+\left(\hat{\beta_{A}}+\hat{\beta_{E}}\right)$ Income $_{i}+\hat{\varepsilon_{i}}$

3. Interactions

3.3. Continuous

- The same principle applies to continuous variables:

$$
\text { Pollution }_{i}=\hat{\alpha}+\hat{\beta}_{1} \text { Income }_{i}+\hat{\beta}_{2} \text { Distance }_{i}+\hat{\beta}_{3}\left(\text { Distance }_{i} \times \text { Income }_{i}\right)+\hat{\epsilon}_{i}
$$

- What is the effect of a 1 -unit increase in income here?

$$
\hat{\beta}_{1}+\hat{\beta}_{3} \text { Distance }_{i}
$$

- The coefficient associated with the interaction, $\hat{\beta}_{3}$, indicates:
- By how the effect of a 1-unit increase in income on pollution varies with distance
- When distance $=\mathbf{0}$ the effect of income is $\hat{\beta}_{1}$
- For every additional unit of distance, the effect of income on pollution increases by $\hat{\beta_{3}}$
\rightarrow Don't omit to include your interaction variable as a control in the regression

Overview

1. Adding variables \checkmark
 1.1. Continuous variables
 1.2. Discrete variables

2. Control variables \checkmark
2.1. Motivation
2.2. Discrete controls
2.3. Continuous controls

3. Interactions \checkmark

3.1. Motivation
3.2. Discrete interactions
3.3. Continuous interactions
4. Wrap up!

4. Wrap up!

1. Multivariate regressions

- Adding a second independent variable in the regression amounts to fitting a plane instead of a line
- Adding a third variable would fit a hyperplane of dimension 3 and so on

Adding a continuous variable

4. Wrap up!

2. Control variables

- Adding a third variable z removes its potential confounding effect from the relationship between x and y
- As we move along the x axis, the third variable remains constant

4. Wrap up!

3. Interactions

- Adding an interaction term with z allows to see how the effect of x on y varies with z
- If z is discrete, it amounts to regressing y on x separately for each z group

$$
\hat{y}_{i}=\hat{\alpha}+\hat{\beta_{1}} x+\hat{\beta}_{2} z+\hat{\beta_{3}}(x \times z)+\hat{\varepsilon_{i}}
$$

